• Chinese Journal of Lasers
  • Vol. 48, Issue 12, 1201003 (2021)
Yizhou Liu1, Wenchao Qiao1, Kong Gao1、2, Rong Xu2, Tianli Feng1、2, Meng Zhang1, Xun Li3, Yangyang Liang1、2, and Tao Li1、2、*
Author Affiliations
  • 1Laser Physics and Technology Laboratory, School of Information Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
  • 2China Key Laboratory of Laser & Infrared System (Shandong University), Ministry of Education, Qingdao, Shandong 266237, China
  • 3State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an, Shaanxi 710119, China
  • show less
    DOI: 10.3788/CJL202148.1201003 Cite this Article Set citation alerts
    Yizhou Liu, Wenchao Qiao, Kong Gao, Rong Xu, Tianli Feng, Meng Zhang, Xun Li, Yangyang Liang, Tao Li. Development of High-Power Ultrafast Fiber Laser Technology[J]. Chinese Journal of Lasers, 2021, 48(12): 1201003 Copy Citation Text show less
    References

    [1] Snitzer E. Optical maser action of Nd +3 in a barium crown glass[J]. Physical Review Letters, 7, 444-446(1961). http://prola.aps.org/abstract/PRL/v7/i12/p444_1

    [2] Koester C J, Snitzer E. Amplification in a fiber laser[J]. Applied Optics, 3, 1182-1186(1964). http://www.opticsinfobase.org/ao/abstract.cfm?id=13541

    [3] Kao K C, Hockham G A. Dielectric-fibre surface waveguides for optical frequencies[J]. Proceedings of the Institution of Electrical Engineers, 113, 1151-1158(1966). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5250060

    [4] Stolen R H, Lin C. Self-phase-modulation in silica optical fibers[J]. Physical Review A, 17, 1448-1453(1978). http://ci.nii.ac.jp/naid/10022324189

    [5] Tomlinson W J, Stolen R H, Shank C V. Compression of optical pulses chirped by self-phase modulation in fibers[C]. //Conference on Lasers and Electro-Optics, June 19-22, 1984, Anaheim, California, TUE4(1984).

    [6] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 56, 219-221(1985). http://www.sciencedirect.com/science/article/pii/0030401885901518

    [7] Snitzer E, Po H, Hakimi F et al. Double clad, offset core Nd fiber laser[C]. //Optical Fiber Sensors, January 27, 1988, New Orleans, LA, PD5(1988).

    [8] Taverner D, Richardson D J, Dong L et al. 158-μJ pulses from a single-transverse-mode, large-mode-area erbium-doped fiber amplifier[J]. Optics Letters, 22, 378-380(1997).

    [9] Xue B, Fan W H, Liu H L et al. THz generation and detection based on the technology of ultra-fast femto-second laser[J], 37, 1-5(2008).

    [10] Hao Q, Shen X L, Zeng H P. All fiber ultrafast laser and optical frequency comb[J]. OE Product & News, 9, 32-33(2018).

    [11] Zhao Y, Liu Y Z, Zhao D S et al. Evolution of mode-locked technology of fiber lasers[J]. Laser Technology, 33, 162-165(2009).

    [12] Ippen E P. Principles of passive mode locking[J]. Applied Physics B, 58, 159-170(1994). http://link.springer.com/article/10.1007/BF01081309

    [13] Yu X, Luo J Q, Xiao X S et al. Research progress of high-power ultrafast fiber lasers[J]. Chinese Journal of Lasers, 46, 0508007(2019).

    [14] Zhou X K, Song Y J, Liao R Y et al. Research on modified nonlinear amplifying loop mirror mode-locked lasers[J]. Chinese Journal of Lasers, 42, 1202002(2015).

    [15] Li X H, Wang Y G, Wang Y S et al. Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser[J]. Optics Express, 22, 17227-17235(2014).

    [16] Li C, Ma Y, Gao X et al. 1 GHz repetition rate femtosecond Yb∶fiber laser for direct generation of carrier-envelope offset frequency[J]. Applied Optics, 54, 8350-8353(2015). http://www.ncbi.nlm.nih.gov/pubmed/26479608

    [17] Li C, Wang G Z, Jiang T X et al. 750 MHz fundamental repetition rate femtosecond Yb∶fiber ring laser[J]. Optics Letters, 38, 314-316(2013).

    [18] Chong A, Buckley J, Renninger W et al. All-normal-dispersion femtosecond fiber laser[J]. Optics Express, 14, 10095-10100(2006).

    [19] Lim H, Ilday F Ö, Wise F W. Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control[J]. Optics Express, 10, 1497-1502(2002). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-10-25-1497

    [20] Szczepanek J, Kardaś T M, Radzewicz C et al. Ultrafast laser mode-locked using nonlinear polarization evolution in polarization maintaining fibers[C]. //Conference on Lasers and Electro-Optics, May 14-19, 2017, San Jose, California, SM2I, 5(2017).

    [21] Zhang J, Kong Z Y, Liu Y Z et al. Compact 517 MHz soliton mode-locked Er-doped fiber ring laser[J]. Photonics Research, 4, 27-29(2016). http://www.cnki.com.cn/Article/CJFDTotal-GZXJ201601007.htm

    [22] Ma D, Cai Y, Zhou C et al. 37.4 fs pulse generation in an Er∶fiber laser at a 225 MHz repetition rate[J]. Optics Letters, 35, 2858-2860(2010).

    [23] Sun B, Luo J, Ng B P et al. Dispersion-compensation-free femtosecond Tm-doped all-fiber laser with a 248 MHz repetition rate[J]. Optics Letters, 41, 4052-4055(2016). http://europepmc.org/abstract/MED/27607970

    [24] Lai W, Zhang H, Zhu Z et al. Sub-200 fs, 344 MHz mode-locked Tm-doped fiber laser[J]. Optics Letters, 45, 5492-5495(2020). http://www.researchgate.net/publication/344147909_Sub-200_fs_344_MHz_mode-locked_Tm-doped_fiber_laser

    [25] Bowen P, Erkintalo M, Provo R et al. Mode-locked Yb-doped fiber laser emitting broadband pulses at ultralow repetition rates[J]. Optics Letters, 41, 5270-5273(2016). http://www.ncbi.nlm.nih.gov/pubmed/27842110

    [26] Ou S M, Liu G Y, Guo L et al. 870 fs, 448 kHz pulses from an all-polarization-maintaining Yb-doped fiber laser with a nonlinear amplifying loop mirror[J]. Applied Optics, 57, 5068-5071(2018). http://www.opticsinfobase.org/ao/abstract.cfm?uri=ao-57-18-5068

    [27] Yu Y, Teng H, Wang H B et al. Highly-stable mode-locked PM Yb-fiber laser with 10 nJ in 93-fs at 6 MHz using NALM[J]. Optics Express, 26, 10428-10434(2018). http://europepmc.org/abstract/MED/29715980

    [28] Gao G, Zhang H T, Li Y H et al. All-normal-dispersion fiber laser with NALM:power scalability of the single-pulse regime[J]. Laser Physics Letters, 15, 035106(2018). http://iopscience.iop.org/article/10.1088/1612-202X/aa9da1

    [29] Liu G Y, Wang A M, Zhang Z G. 84-fs 500-MHz Yb∶fiber-based laser oscillator mode locked by biased NALM[J]. IEEE Photonics Technology Letters, 29, 2055-2058(2017). http://ieeexplore.ieee.org/document/8070386/

    [30] Jiang T X, Cui Y F, Lu P et al. All PM fiber laser mode locked with a compact phase biased amplifier loop mirror[J]. IEEE Photonics Technology Letters, 28, 1786-1789(2016). http://ieeexplore.ieee.org/document/7478043

    [31] Peng Z G, Shi Y H, Bu X B et al. 21 W, 105 μJ regenerative amplifier based on Yb∶YAG SCF and NALM fiber oscillator[J]. IEEE Photonics Technology Letters, 32, 333-336(2020). http://ieeexplore.ieee.org/document/8999613

    [32] Jia D F, Jin Y T, Sun X et al. Self-starting dual mode-locking Er-doped fiber laser with low repetition rate[C]. //2018 Asia Communications and Photonics Conference (ACP), October 26-29, 2018, Hangzhou, China., 1-3(2018).

    [33] Guo Z R, Hao Q, Peng J S et al. Environmentally stable Er-fiber mode-locked pulse generation and amplification by spectrally filtered and phase-biased nonlinear amplifying long-loop mirror[J]. High Power Laser Science and Engineering, 7, e47(2019).

    [34] Zhao K J, Wang P, Ding Y H et al. High-energy dissipative soliton resonance and rectangular noise-like pulse in a figure-9 Tm fiber laser[J]. Applied Physics Express, 12, 012002(2019). http://ci.nii.ac.jp/naid/150000116789

    [35] Li J F, Zhang Z X, Sun Z Y et al. All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes[J]. Optics Express, 22, 7875-7882(2014). http://adsabs.harvard.edu/abs/2014OExpr..22.7875L%201

    [36] Dou Z Y, Zhang B, He X et al. High-power and large-energy dissipative soliton resonance in a compact Tm-doped all-fiber laser[J]. IEEE Photonics Technology Letters, 31, 381-384(2019).

    [37] Zhang M, Chen L L, Zhou C et al. Mode-locked ytterbium-doped linear-cavity fiber laser operated at low repetition rate[J]. Laser Physics Letters, 6, 657-660(2009). http://onlinelibrary.wiley.com/doi/10.1002/lapl.200910047/citedby

    [38] Liu J, Xu J, Wang P. High repetition-rate narrow bandwidth SESAM mode-locked Yb-doped fiber lasers[J]. IEEE Photonics Technology Letters, 24, 539-541(2012). http://ieeexplore.ieee.org/document/6112793

    [39] Li P X, Yao Y F, Chi J J et al. 980-nm all-fiber mode-locked Yb-doped phosphate fiber oscillator based on semiconductor saturable absorber mirror and its amplifier[J]. Chinese Physics B, 25, 084207(2016).

    [40] Lü Z, Yang Z, Li F et al. SESAM mode-locked all-polarization-maintaining fiber linear cavity ytterbium laser source with spectral filter as pulse shaper[J]. Laser Physics, 28, 125103(2018). http://www.researchgate.net/publication/328106517_SESAM_mode-locked_all-polarization-maintaining_fiber_linear_cavity_ytterbium_laser_source_with_spectral_filter_as_pulse_shaper

    [41] Chong A, Renninger W H, Wise F W. Environmentally stable all-normal-dispersion femtosecond fiber laser[J]. Optics Letters, 33, 1071-1073(2008).

    [42] Cheng H H, Wang W L, Zhou Y et al. 5 GHz fundamental repetition rate, wavelength tunable, all-fiber passively mode-locked Yb-fiber laser[J]. Optics Express, 25, 27646-27651(2017). http://www.ncbi.nlm.nih.gov/pubmed/29092235

    [43] Yang S. Generation of high-energy and low-repetition rate hybrid pulses from a passively mode-locked Tm-Ho co-doped laser[J]. Optik, 195, 163156(2019). http://www.sciencedirect.com/science/article/pii/S0030402619310460

    [44] Zeng J J, Akosman A E, Sander M Y. Scaling the repetition rate of thulium-doped ultrafast soliton fiber lasers to the GHz regime[J]. Optics Express, 26, 24687-24694(2018). http://www.researchgate.net/publication/327487153_Scaling_the_repetition_rate_of_thulium-doped_ultrafast_soliton_fiber_lasers_to_the_GHz_regime

    [45] Kuan P W, Li K F, Zhang L et al. 0.5-GHz repetition rate fundamentally Tm-doped mode-locked fiber laser[J]. IEEE Photonics Technology Letters, 28, 1525-1528(2016).

    [46] Liu Z W, Ziegler Z M, Wright L G et al. Megawatt peak power from a Mamyshev oscillator[J]. Optica, 4, 649-654(2017). http://arxiv.org/abs/1703.09166v1

    [47] Olivier M, Boulanger V, Guilbert-Savary F et al. Femtosecond Mamyshev oscillator at 1550 nm[C]. //Advanced Solid State Lasers 2018, November 4-8, 2018, Boston, Massachusetts, United States, ATu1A, 4(2018).

    [48] Swiderski J, Michalska M, Grzes P. Mode-locking and self-mode-locking-like operation in a resonantly pumped gain-switched Tm-doped fiber laser[J]. Optics Communications, 453, 124406(2019). http://www.sciencedirect.com/science/article/pii/S0030401819307291

    [49] Liu W, Liao R Y, Zhao J et al. Femtosecond Mamyshev oscillator with 10-MW-level peak power[J]. Optica, 6, 194-197(2019).

    [50] Mamyshev P V. All-optical data regeneration based on self-phase modulation effect[C]. //24th European Conference on Optical Communication. ECOC ‘98 (IEEE Cat. No.98TH8398), September 20-24, 1998, Madrid, Spain., 475-476(1998).

    [51] Pitois S, Finot C, Provost L et al. Generation of localized pulses from incoherent wave in optical fiber lines made of concatenated Mamyshev regenerators[J]. Journal of the Optical Society of America B, 25, 1537-1547(2008). http://www.opticsinfobase.org/abstract.cfm?uri=josab-25-9-1537

    [52] Regelskis K, Ž1eludevičius J, Viskontas K et al. Ytterbium-doped fiber ultrashort pulse generator based on self-phase modulation and alternating spectral filtering[J]. Optics Letters, 40, 5255-5258(2015).

    [53] Chen Y H, Sidorenko P, Thorne R et al. Starting dynamics of a linear-cavity femtosecond Mamyshev oscillator[J]. Journal of the Optical Society of America B, 38, 743-748(2021).

    [54] Jiang T, Yin K, Wang C et al. Ultrafast fiber lasers mode-locked by two-dimensional materials:review and prospect[J]. Photonics Research, 8, 78-90(2020).

    [55] Martinez A, Yamashita S. 10 GHz fundamental mode fiber laser using agraphene saturable absorber[J]. Applied Physics Letters, 101, 041118(2012). http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4739512

    [56] Liu W J, Pang L H, Han H N et al. Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers[J]. Optics Express, 25, 2950-2959(2017). http://www.ncbi.nlm.nih.gov/pubmed/29519011

    [57] Guo P L, Li X H, Feng T C et al. Few-layer bismuthene for coexistence of harmonic and dual wavelength in a mode-locked fiber laser[J]. ACS Applied Materials & Interfaces, 12, 31757-31763(2020). http://pubs.acs.org/doi/10.1021/acsami.0c05325

    [58] Zhao Y, Wang W, Li X H et al. Functional porous MOF-derived CuO octahedra for harmonic soliton molecule pulses generation[J]. ACS Photonics, 7, 2440-2447(2020). http://pubs.acs.org/doi/10.1021/acsphotonics.0c00520

    [59] Grüner-Nielsen L, Jakobsen D, Jespersen K G et al. A stretcher fiber for use in fs chirped pulse Yb amplifiers[J]. Optics Express, 18, 3768-3773(2010). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-4-3768

    [60] Dionne R, Morin M. Pulse stretching using high accuracy chirped fiber Bragg grating[EB/OL]. [2020-03-01]. https://teraxion.blob.core.windows.net/media/1230/pulse-stretching-using-high-accuracy-chirped-fiber-bragg-grating-application-note.pdf

    [61] Glebov L B, Smirnov V, Rotari E et al. Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses[J]. Optical Engineering, 53, 051514(2014). http://spie.org/Publications/Journal/10.1117/1.OE.53.5.051514

    [62] Zhang Z G, Song Y R, Sun D R et al. Compact and material-dispersion-compatible offner stretcher for chirped pulse amplifications[J]. Optics Communications, 206, 7-12(2002).

    [63] Yakovlev I V. Stretchers and compressors for ultra-high power laser systems[J]. Quantum Electronics, 44, 393-414(2014). http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=qe&paperid=15912&option_lang=eng

    [64] Clara S. Pulse stretching and compressing using grating pairs[EB/OL]. [2020-03-01]. https://ibsen.com/technology/grating-tutorial/white-paper-pulse-compression-gratings/

    [65] Chauhan V, Bowlan P, Cohen J et al. Single-diffraction-grating and grism pulse compressors[J]. Journal of the Optical Society of America B, 27, 619-624(2010). http://www.opticsinfobase.org/josab/abstract.cfm?id=196224

    [66] Chen H W, Sosnowski T, Liu C H et al. Chirally-coupled-core Yb-fiber laser delivering 80-fs pulses with diffraction-limited beam quality warranted by a high-dispersion mirror based compressor[J]. Optics Express, 18, 24699-24705(2010).

    [67] Hartl I, Imeshev G, Fermann M E. Yb fiber laser chirped pulse amplifier system using a fiber Bragg grating stretcher matched to the Treacy compressor[C]. //Advanced Solid-State Photonics 2004, February 1-4, 2004, Santa Fe, New Mexico, United States, MD2(2004).

    [68] Niu J, Liu B W, Song H Y et al. High-pulse-quality Yb-fiber amplifier generation of 10 μJ, 250 fs pulses at 500 kHz repetition rate[J]. Optik, 200, 163399(2020). http://www.sciencedirect.com/science/article/pii/S0030402619312975

    [69] Klenke A, Hädrich S, Eidam T et al. 22 GW peak-power fiber chirped-pulse-amplification system[J]. Optics Letters, 39, 6875-6878(2014).

    [70] Kienel M, Müller M, Klenke A et al. 12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition[J]. Optics Letters, 41, 3343-3346(2016). http://www.opticsinfobase.org/abstract.cfm?uri=ol-41-14-3343

    [71] Liu Y Z, Krogen P, Hong K H et al. Fiber-amplifier-pumped, 1-MHz, 1-μJ, 2.1-μm, femtosecond OPA with chirped-pulse DFG front-end[J]. Optics Express, 27, 9144-9154(2019). http://www.researchgate.net/publication/331759319_Fiber-amplifier-pumped_1-MHz_1-J_21-m_femtosecond_OPA_with_chirped-pulse_DFG_front-end

    [72] Luo D, Liu Y, Gu C et al. 130 W, 180 fs ultrafast Yb-doped fiber frequency comb based on chirped-pulse fiber amplification[J]. Optics Express, 28, 4817-4824(2020). http://www.researchgate.net/publication/338874971_130_W_180_fs_ultrafast_Yb-doped_fiber_frequency_comb_based_on_chirped-pulse_fiber_amplification

    [73] Limpert J, Roser F, Schimpf D N et al. High repetition rate gigawatt peak power fiber laser systems: challenges, design, and experiment[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 159-169(2009). http://ieeexplore.ieee.org/document/4773314

    [74] Schimpf D N, Limpert J, Tünnermann A. Controlling the influence of SPM in fiber-based chirped-pulse amplification systems by using an actively shaped parabolic spectrum[J]. Optics Express, 15, 16945-16953(2007).

    [75] Fermann M E, Kruglov V I, Thomsen B C et al. Self-similar propagation and amplification of parabolic pulses in optical fibers[J]. Physical Review Letters, 84, 6010-6013(2000). http://www.ncbi.nlm.nih.gov/pubmed/10991111

    [76] He M Y, Li M, Yuan S et al. High-power femtosecond self-similar fiber amplification system[J]. Chinese Journal of Lasers, 47, 0308001(2020).

    [77] Mueller M, Aleshire C, Stark H et al. 10.4 kW coherently-combined ultrafast fiber laser[J]. Proceedings of SPIE, 11260, 112600B(2020). http://arxiv.org/abs/2101.08499v1

    [78] Zhou S A, Wise F W, Ouzounov D G. Divided-pulse amplification of ultrashort pulses[J]. Optics Letters, 32, 871-873(2007). http://europepmc.org/abstract/MED/17339965

    [79] Liu W, Schimpf D N, Eidam T et al. Pre-chirp managed nonlinear amplification in fibers delivering 100 W, 60 fs pulses[J]. Optics Letters, 40, 151-154(2015). http://www.ncbi.nlm.nih.gov/pubmed/25679831

    [80] Eidam T, Hanf S, Seise E et al. Femtosecond fiber CPA system emitting 830 W average output power[J]. Optics Letters, 35, 94-96(2010).

    [81] Jauregui C, Stihler C, Limpert J. Transverse mode instability[J]. Advances in Optics and Photonics, 12, 429-484(2020).

    [82] Klenke A, Seise E, Demmler S et al. Coherently-combined two channel femtosecond fiber CPA system producing 3 mJ pulse energy[J]. Optics Express, 19, 24280-24285(2011). http://www.ncbi.nlm.nih.gov/pubmed/22109454

    [83] Seise E, Klenke A, Breitkopf S et al. 88 W 0.5 mJ femtosecond laser pulses from two coherently combined fiber amplifiers[J]. Optics Letters, 36, 3858-3860(2011).

    [84] Klenke A, Breitkopf S, Kienel M et al. 530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 38, 2283-2285(2013). http://europepmc.org/abstract/med/23811903

    [85] Müller M, Klenke A, Steinkopff A et al. 3.5 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 43, 6037-6040(2018). http://arxiv.org/abs/2101.08499v1

    [86] Müller M, Kienel M, Klenke A et al. 1 kW 1 mJ eight-channel ultrafast fiber laser[J]. Optics Letters, 41, 3439-3442(2016). http://www.ncbi.nlm.nih.gov/pubmed/27472588

    [87] Mueller M, Klenke A, Stark H et al. 16 channel coherently-combined ultrafast fiber laser[C]. //Advanced Solid State Lasers, October 1-5, 2017, Nagoya, Aichi, AW4A, 3(2017).

    [88] Mueller M, Klenke A, Stark H et al. 1.8-kW 16-channel ultrafast fiber laser system[J]. Proceedings of SPIE, 10512, 1051208(2018). http://www.zhangqiaokeyan.com/academic-conference-foreign_lasers-xv-technology-and_thesis/020512364567.html

    [89] Yan D Y, Liu B W, Song H Y et al. Research status and development trend of high power femtosecond fiber laser amplifiers[J]. Chinese Journal of Lasers, 46, 0508012(2019).

    [90] Kuznetsova L, Wise F W. Scaling of femtosecond Yb-doped fiber amplifiers to tens of microjoule pulse energy via nonlinear chirped pulse amplification[J]. Optics Letters, 32, 2671-2673(2007).

    [91] Röser F, Eidam T, Rothhardt J et al. Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 32, 3495-3497(2007).

    [92] Limpert J, Schreiber T, Nolte S et al. All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber[J]. Optics Express, 11, 3332-3337(2003). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-11-24-3332

    [93] Röser F, Schimpf D, Schmidt O et al. 90 W average power 100 μJ energy femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 32, 2230-2232(2007).

    [94] Galvanauskas A, Cho G C, Hariharan A et al. Generation of high-energy femtosecond pulses in multimode-core Yb-fiber chirped-pulse amplification systems[J]. Optics Letters, 26, 935-937(2001).

    [95] Limpert J, Clausnitzer T, Liem A et al. High-average-power femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 28, 1984-1986(2003). http://www.ncbi.nlm.nih.gov/pubmed/14587797

    [96] Boullet J, Zaouter Y, Limpert J et al. High-order harmonic generation at a megahertz-level repetition rate directly driven by an ytterbium-doped-fiber chirped-pulse amplification system[J]. Optics Letters, 34, 1489-1491(2009).

    [97] Chang H, Cheng Z C, Sun R Y et al. 172-fs, 27-μJ, Yb-doped all-fiber-integrated chirped pulse amplification system based on parabolic evolution by passive spectral amplitude shaping[J]. Optics Express, 27, 34103-34112(2019). http://www.ncbi.nlm.nih.gov/pubmed/31878466

    [98] Zhao Z G, Kobayashi Y. Ytterbium fiber-based, 270 fs, 100 W chirped pulse amplification laser system with 1 MHz repetition rate[J]. Applied Physics Express, 9, 012701(2016). http://ci.nii.ac.jp/lognavi?name=pmd&id=10.7567/APEX.9.012701

    [99] Kienel M, Klenke A, Eidam T et al. Energy scaling of femtosecond amplifiers using actively controlled divided-pulse amplification[J]. Optics Letters, 39, 1049-1052(2014).

    [100] Stark H, Buldt J, Müller M et al. 23 mJ high-power fiber CPA system using electro-optically controlled divided-pulse amplification[J]. Optics Letters, 44, 5529-5532(2019). http://www.ncbi.nlm.nih.gov/pubmed/31730100

    [101] Zaouter Y, Guichard F, Daniault L et al. Femtosecond fiber chirped- and divided-pulse amplification system[J]. Optics Letters, 38, 106-108(2013). http://www.opticsinfobase.org/abstract.cfm?URI=ol-38-2-106

    [102] Guichard F, Zaouter Y, Hanna M et al. High-energy chirped-and divided-pulse Sagnac femtosecond fiber amplifier[J]. Optics Letters, 40, 89-92(2015). http://www.ncbi.nlm.nih.gov/pubmed/25531616

    [103] Eidam T, Kienel M, Klenke A et al. Divided-pulse amplification for terawatt-class fiber lasers[J]. The European Physical Journal Special Topics, 224, 2567-2571(2015). http://link.springer.com/article/10.1140/epjst/e2015-02566-8

    [104] Pouysegur J, Weichelt B, Guichard F et al. Simple Yb∶YAG femtosecond booster amplifier using divided-pulse amplification[J]. Optics Express, 24, 9896-9904(2016). http://dx.doi.org/10.1364/oe.24.009896

    [105] Mueller M, Kienel M, Klenke A et al. 12 mJ pulse energy 8-channel divided-pulse ultrafast fiber-laser system[J]. Proceedings of SPIE, 10083, 1008302(2017). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2606884

    [106] Zhang Y, Chen R Z, Huang H D et al. High-power pre-chirp managed amplification of circularly polarized pulses usinghigh-dispersion chirped mirrors as a compressor[J]. OSA Continuum, 3, 1988-1998(2020). http://www.researchgate.net/publication/342688059_High-power_pre-chirp_managed_amplificationof_circularly_polarized_pulses_using_highdispersion_chirped_mirrors_as_compressor

    [107] Liu Y, Li W X, Zhao J et al. High-power pre-chirp managed amplification of femtosecond pulses at high repetition rates[J]. Laser Physics Letters, 12, 075101(2015). http://adsabs.harvard.edu/abs/2015LaPhL..12g5101L

    [108] Zhao J, Li W X, Wang C et al. Pre-chirping management of a self-similar Yb-fiber amplifier towards 80 W average power with sub-40 fs pulse generation[J]. Optics Express, 22, 32214-32219(2014).

    [109] Huang H D, Zhang Y, Teng H et al. Pre-chirp managed amplification of circularly polarized pulses using chirped mirrors for pulse compression[C]. //2019 Conference on Lasers and Electro-Optics, May 5-9, 2019, San Jose, California, SM3L, 3(2019).

    [110] Luo D P, Liu Y, Gu C L et al. High-power Yb-fiber comb based on pre-chirped-management self-similar amplification[J]. Applied Physics Letters, 112, 061106(2018).

    [111] Liu Y, Li W X, Luo D P et al. Generation of 33 fs 93.5 W average power pulses from a third-order dispersion managed self-similar fiber amplifier[J]. Optics Express, 24, 10939-10945(2016).

    [112] Pei H Z, Ruppe J, Chen S Y et al. 10 mJ energy extraction from Yb-doped 85 μm core CCC fiber using coherent pulse stacking amplification of fs pulses[C]. //Advanced Solid State Lasers, October 1-5, 2017, Nagoya, Aichi, Japan, AW4A, 4(2017).

    [113] Peng X, Kim K, Mielke M et al. Monolithic fiber chirped pulse amplification system for millijoule femtosecond pulse generation at 1.55 μm[J]. Optics Express, 22, 2459-2464(2014).

    [114] Gaida C, Gebhardt M, Stutzki F et al. Thulium-doped fiber chirped-pulse amplification system with 2 GW of peak power[J]. Optics Letters, 41, 4130-4133(2016). http://www.ncbi.nlm.nih.gov/pubmed/27607990

    [115] Gaida C, Gebhardt M, Heuermann T et al. Ultrafast thulium fiber laser system emitting more than 1 kW of average power[J]. Optics Letters, 43, 5853-5856(2018). http://www.researchgate.net/publication/329277839_Ultrafast_thulium_fiber_laser_system_emitting_more_than_1_kW_of_average_power

    [116] Klenke A, Kienel M, Eidam T et al. Divided-pulse nonlinear compression[J]. Optics Letters, 38, 4593-4596(2013).

    [117] Liu Y Z, Liu W, Schimpf D N et al. 100-W few-cycle Yb-fiber laser source based on pre-chirp managed amplification employing circular polarization[C]. //Advanced Solid State Lasers 2016, October 30-November 3, 2016, Boston, Massachusetts, United States, JTh2A, 38(2016).

    [118] Herkommer C, Krötz P, Klingebiel S et al. Towards a joule-class ultrafast thin-disk based amplifier at kilohertz repetition rate[C]. //Conference on Lasers and Electro-Optics, May 5-10, 2019, San Jose, California, SM4E, 3(2019).

    [119] Zhou T, Ruppe J, Zhu C et al. Coherent pulse stacking amplification using low-finesse gires-tournois interferometers[J]. Optics Express, 23, 7442-7462(2015). http://europepmc.org/abstract/MED/25837085

    [120] Fan G, Carpeggiani P A, Tao Z et al. 70 mJ nonlinear compression and scaling route for an Yb amplifier using large-core hollow fibers[J]. Optics Letters, 46, 896-899(2021).

    [121] Wang P F, Li Y Y, Li W K et al. 2.6 mJ/100 Hz CEP-stable near-single-cycle 4 μm laser based on OPCPA and hollow-core fiber compression[J]. Optics Letters, 43, 2197-2200(2018).

    [122] Cao H B, Nagymihaly R S, Chvykov V et al. Multipass-cell-based post-compression of radially and azimuthally polarized pulses to the sub-two-cycle regime[J]. Journal of the Optical Society of America B, 36, 2517-2525(2019). http://www.researchgate.net/publication/335201978_Multipass-cell-based_post-compression_of_radially_and_azimuthally_polarized_pulses_to_the_sub-two-cycle_regime

    [123] Schulte J, Sartorius T, Weitenberg J et al. Nonlinear pulse compression in a multi-pass cell[J]. Optics Letters, 41, 4511-4514(2016). http://www.ncbi.nlm.nih.gov/pubmed/27749868

    [124] Vicentini E, Wang Y C, Gatti D et al. Nonlinear pulse compression to 22 fs at 15.6 μJ by an all-solid-state multipass approach[J]. Optics Express, 28, 4541-4549(2020). http://www.researchgate.net/publication/338780932_Nonlinear_pulse_compression_to_22_fs_at_156_J_by_an_all-solid-state_multipass_approach

    [125] Travers J C, Chang W, Nold J et al. Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers[J]. Journal of the Optical Society of America B, 28, A11-A26(2011). http://www.opticsinfobase.org/josab/abstract.cfm?uri=josab-28-12-A11

    [126] Chen X W, Jullien A, Malvache A et al. Generation of 4.3 fs, 1 mJ laser pulses via compression of circularly polarized pulses in a gas-filled hollow-core fiber[J]. Optics Letters, 34, 1588-1590(2009). http://europepmc.org/abstract/MED/19448830

    [127] Kaumanns M, Kormin D, Nubbemeyer T et al. Spectral broadening of 112 mJ, 1.3 ps pulses at 5 kHz in a LG10 multipass cell with compressibility to 37 fs[J]. Optics Letters, 46, 929-932(2021). http://www.researchgate.net/publication/348776308_Spectral_broadening_of_112_mJ_13_ps_pulses_at_5_kHz_in_a_donut_mode_multipass_with_compressibility_to_37_fs

    [128] Guichard F, Zaouter Y, Hanna M et al. Energy scaling of a nonlinear compression setup using passive coherent combining[J]. Optics Letters, 38, 4437-4440(2013). http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-38-21-4437

    [129] Beirow F, Eckerle M, Aubry N et al. A 290 W radially polarized output power from a single-stage single-crystal Yb∶YAG amplifier[C]. //2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), June 23-27, 2019, Munich, Germany., 19147883(2019).

    Yizhou Liu, Wenchao Qiao, Kong Gao, Rong Xu, Tianli Feng, Meng Zhang, Xun Li, Yangyang Liang, Tao Li. Development of High-Power Ultrafast Fiber Laser Technology[J]. Chinese Journal of Lasers, 2021, 48(12): 1201003
    Download Citation