Light carries energy and momentum, laying the physical foundation of optical manipulation that has facilitated advances in myriad scientific disciplines, ranging from biochemistry and robotics to quantum physics. Utilizing the momentum of light, optical tweezers have exemplified elegant light–matter interactions in which mechanical and optical momenta can be interchanged, whose effects are the most pronounced on micro and nano objects in fluid suspensions. In solid domains, the same momentum transfer becomes futile in the face of dramatically increased adhesion force. Effective implementation of optical manipulation should thereupon switch to the “energy” channel by involving auxiliary physical fields, which also coincides with the irresistible trend of enriching actuation mechanisms beyond sole reliance on light-momentum-based optical force. From this perspective, this review covers the developments of optical manipulation in schemes of both momentum and energy transfer, and we have correspondingly selected representative techniques to present. Theoretical analyses are provided at the beginning of this review followed by experimental embodiments, with special emphasis on the contrast between mechanisms and the practical realization of optical manipulation in fluid and solid domains.

- Photonics Insights
- Vol. 2, Issue 2, R05 (2023)
Abstract
Story Video to the Review Article
Author Presentation Playback
1 Introduction
Light can exert forces (torques) on objects during the light–matter interaction and therefore is used as an optical manipulation tool for micro/nano-objects. As early as 1619, the concept of “force of light” was first proposed by Johannes Kepler in an attempt to explain the phenomenon that when a comet enters the solar system, its tail is always deflected away from the sun[1]. The underlying mechanism was later summarized by Maxwell’s electromagnetic theory, which states that light, though electromagnetic waves, carries momentum[2]. Accounting for forces that stem from the momentum exchange between the radiation field and the interactive matter, the force of light belongs to a general phenomenon known as the “radiation force”[3–5]. For the sake of brevity, the electromagnetic radiation force has now been more frequently addressed as the “optical force.” Specifically, the most vivid picture of optical force should be the case that when a beam of light is fired at a reflecting mirror, a pushing force is generated as the consequence of the momentum transfer from photons to the mirror, as the direction of light momentum is reversed upon reflection. However, due to the “extreme minuteness” of the optical force, John Henry Poynting deemed its application untenable in driving mechanical locomotion in terrestrial scenarios[6]. The potential of light momentum, or rather, the optical force, was not truly appreciated until the advent of the laser and the landmark invention of optical tweezers by Arthur Ashkin, who demonstrated optical trapping and manipulation of micro/nano particles, living cells, and molecules using optical force in fluidic environments[7,8]. By virtue of his remarkable work, Ashkin was awarded the Nobel Prize in Physics in 2018. His experiments also formed the basis of another Nobel Prize in Physics in 1997 for Steven Chu’s work on the optical cooling of atoms, showing that optical manipulation is a fascinating field in fostering scientific explorations at the “bottom” (quoting Richard Feynman’s speech[9]).
In the macro regime, a semi-quantitative estimation of the optical force exerted on a reflective surface is
For micrometer or sub-wavelength objects, a
Sign up for Photonics Insights TOC. Get the latest issue of Photonics Insights delivered right to you!Sign up now
To implement optical manipulation in the fluidic domain, aside from acquiring mechanical momentum directly from light momentum, an indirect route can be taken, which requires making use of the hydrodynamic surroundings. A representative example is the photophoretic force, denoting the migration of light-absorptive particles in gaseous suspensions[18,19]. Specifically, the generation of photophoretic force demands the existence of gas molecules, the collisions between which and the particle create a net force pointing opposite to the particle’s surface temperature gradient. Assuming a particle with zero thermal conductivity, the relevance of the gas pressure greatly diminishes, and the photophoretic force can be estimated as
Fluidic environments have proved to be golden testing grounds for optical manipulation, while an inevitable trend is to further extend its capability to the solid domain, the exploration of which is doomed to be difficult because of two major challenges: (1) the adhesive and friction forces reach the order of
To meet the challenges, a tactful resolution is to “inflict fluidity” in solid environments through photothermal effects, which bypasses the adhesion and additionally creates auxiliary hydrodynamic flows for mass transportation. In the meantime, it is vital that proper drives should be found that are both adequate in magnitude and compatible with solid environments. Still interfacing the energy channel of light, researchers in the early 1990s demonstrated the detachment and propulsion of adhering particulates via pulsed light illumination on absorbing substrates, the technique of which has been widely exploited in semiconductor surface cleaning[28,29]. As the result of opto-thermo-mechanical muliphysics coupling, the impulsive thermal expansion/compression of the substrate translates into surface acoustic waves, and the particulates immersed in the acoustic momentum field experience the acoustic radiation force calculated as
Inspired by the working principles of machineries, a series of intriguing work has reported multi-degree-of-freedom locomotion of micrometer-sized actuators in dry adhesive environments based on an internal force-driven mechanism[5,35–38]. Interestingly, instead of endeavoring to find the proper driving forces comparable to the
Properties of Different Light-Induced Forces/Effects.
Approximate expressions for intuitive understanding of the scale of corresponding forces. The definitions of related variables can be found in the main text.
Magnitudes of forces when applied to micro/nano objects.
As the opening salvo of this review, the above discussion is aimed to introduce the topic of optical manipulation and provide some general ideas about its actual implementation in fluidic and solid domains from the perspective of different light-induced forces/effects (Table 1). A more comprehensive overview will be provided in the following content, which is also summarized in Fig. 1. The organization of this review is as follows. In Sec. 2, we introduce the physical mechanisms and theories of several light-induced forces involved in optical manipulation processes, including the optical force/torque and the thermophoretic force in fluidic environments and light-induced deformation effects in solid environments. Next, revolving around the fluid as the operational environment, we revisit representative optical manipulation techniques in Sec. 3 and categorize them by the locomotion degree of freedom. In Sec. 4, techniques adapted to the solid domain optical manipulation are presented, which are classified with respect to the working mechanisms. In Sec. 5, we selectively introduce several applications regarding historically important or emerging topics. Finally, we conclude the main contribution of this review, and envision future directions in the field of optical manipulation.
Figure 1.Overview of optical manipulations in fluid domains and solid domains. Optical manipulations generally include optical trapping, pulling and pushing, lateral manipulation, spinning and orbital rotating, and multi-degree-of-freedom manipulation. Optical manipulations in fluid domains are based on light directly induced forces (i.e., optical gradient forces and optical scattering forces) and indirectly induced forces (e.g., photophoretic force and thermal-electric mediated forces) whose amplitudes are typically of the order from pN to nN. In contrast, optical manipulations on solid surfaces need driving forces larger than μN to overcome the tremendous adhesion/friction forces in micro/nano scales. Examples include opto-thermal-elastic forces, pulsed light-induced forces, light-induced forces generated from photoactive polymers, and photothermal deformation-based actuations.
2 Physical Mechanisms and Theories
In Sec. 1, we introduce four types of light-induced forces (effects) that can be exploited in optical manipulation, namely, the optical force, photophoretic force, light-induced acoustic radiation force, and deformation effects, the latter two both originating from opto-thermo-mechanical coupling. For the sake of clarity, we denote that in what follows in this review, optical force (also optical torque) refers exclusively to the force (or torque) arising from momentum transfer between the light field and matter, i.e., electromagnetic radiation force (torque), not to be confused as the general term for all light-induced forces. Moreover, the photophoretic force is a sub-branch under a larger category termed “thermophoretic force,” describing the transmission of small particles in both air (i.e., photophoretic force) and liquid (i.e., Ludwig–Soret effects) media, the differentiation between which will be made clear in Sec. 2.2. Acoustic-wave-related forces, on the other hand, consist of both the external force, as in acoustic radiation force, which stems from acoustic waves excited in substrates, and internal force in the form of light-induced deformation effects (acoustic waves) in actuators.
In this section, physical mechanisms and theories are presented about three representative forces (effects). In Sec. 2.1, the origin and theoretical derivation of optical force and torque will be first provided (from Secs. 2.1.1–2.1.4), followed by a brief introduction of the measurement methods (Sec. 2.1.5) of optical force, which is of great practical significance in optical tweezer experiments. Section 2.2 is devoted to introducing the thermophoretic force in air (Sec. 2.2.1) and liquid suspensions (Sec. 2.2.2), which are associated with different interpretations and analytical treatments. Given that the acoustic radiation force is adequately illustrated in Sec. 1, Sec. 2.3 mainly focuses on the part of the internal force, that is, specifically, the light-induced deformation effects. Note that we have left out “force” in addressing these effects to avoid their being miscomprehended as external forces.
2.1 Optical Force and Optical Torque
2.1.1 Physics origin
Due to the fundamental homogeneity and isotropy of space, closed physical systems carry two conserved quantities termed as linear and angular momenta[39]. Unsurprisingly, light also has linear and angular momenta; thus, it could exert force and torque on physical objects via light–matter interactions, such as reflection, refraction, scattering, and absorbing processes. The earliest realization of the existence of the linear momentum of light can be tracked back to 1619, when Kepler speculated that the pressure of sunlight pushes comet tails away from the Sun. Two centuries later, after the establishment of his famous electromagnetic theory, Maxwell correctly calculated the pressure of solar radiation on the Earth’s surface[40], the similar physics of which confirms Kepler’s speculation. By analog with a point particle in classical mechanics, it is straightforward to argue that a light beam with a linear momentum
At the fundamental micro-level, the force and the torque exerted by light can be computed by summarizing the Lorentz force (
2.1.2 Electromagnetic energy–momentum tensor
In macroscopic electromagnetism, the electromagnetic energy–momentum tensor, a
The contradiction between the Minkowski and Abraham energy–momentum tensors [or more precisely, the Minkowski and Abraham momentum densities, cf. Eqs. (2.c) and (3)] is confusing, since it leads to the indefiniteness of the light momentum that is, however, to have a unique expression due to its physical reality. To explicitly illustrate the predictive difference between the Minkowski and Abraham formulations, we consider that a light wave packet with volume
This Minkowski–Abraham dilemma has attracted considerable theoretical efforts since the late 1960s. The solution that emerged is a bit unexpected: both the Minkowski and Abraham energy–momentum tensors are physically “acceptable,” yet “flawed,” because they alone are incomplete in describing a closed light–matter system. A complete energy–momentum tensor should include both electromagnetic and material parts. Therefore, if appropriate material counterparts are supplemented, the summarized energy–momentum tensor should always be unique. However, as pointed out by Brevik in 1979 in his comprehensive paper, there unfortunately exists no unique solution partitioning the energy–momentum tensor into electromagnetic and material parts[54], the reason behind which partly relates to the ambiguous definition of momentum densities. Notably, as derived by Barnett in 2010, the Abraham and Minkowski momentum densities [cf. Eqs. (2.c) and (3)] correspond to kinetic and canonical momentum densities, respectively[55]. The difference between such two types of momentum densities can be understood by specifically considering a charged particle in electromagnetic fields. In this case, the kinetic momentum density of the particle is simply the product of the mass density and velocity,
For the Minkowski tensor [Eq. (1)], we denote its accompanied material tensor by
The right-hand side of Eq. (5) gives the force density exerted on the fluid, the optical part of which is
2.1.3 Optical force
The time-averaged optical force exerted on a solid particle embedded in a fluid, a prototype problem in optical manipulation, can be calculated by performing the surface integral of the momentum flux density with Eq. (7). Note that, even though this formulation is derived in the fluidic case, its application also extends to other materials as long as electrostriction and magnetostriction effects are negligible[54]. Departing from Eq. (7), further analysis of the optical force can be conducted either through examining the linear momentum transfer of light and representing the optical force in terms of the scattering and absorption quantifiers (e.g., time-averaged scattering and absorption power), or by expressing the optical force in terms of the particle polarizabilities and the electromagnetic fields acting on the particle. The former approach adopts a light wave perspective, while the latter is more oriented to a particle perspective. They together provide complementary insights.
Light wave perspective
An elementary plane wave with wave vector
Here,
Equation (9) well interprets the origin of the optical force from the perspective of light scattering and absorption. First, this equation is reformulated to
When the incident wave is a single plane wave component with wave vector
Particle perspective
The light wave perspective is advantageous in providing a clear physical picture of the optical force in terms of the linear momentum exchange through scattering and absorption processes. However, it does not bring concrete insights on how one could engineer light beam profiles or electromagnetic responses of micro-objects to generate a desired optical force. Moreover, conventional classifications of the optical force into scattering, gradient forces, and other types, do not follow from the light wave perspective.
Here lies the worth of the particle perspective, in which the electromagnetic responses of the micro-object are parameterized by a series of induced electric and magnetic multipoles. Particularly, for the object size much smaller than light wavelength, i.e., in the so-called Rayleigh-limit regime, it suffices to consider only the electric and magnetic dipole moments, denoted by
Here,
The optical gradient and scattering forces are widely explored for various types of optical manipulation, the detailed review of which is provided in Sec. 3. Specifically, the most straightforward way to generate the gradient force is to use a focused Gaussian beam, such that the force points towards the beam center. This gradient force makes it possible to trap the particle against Brownian motion, of which the “optical tweezer” is perhaps the most famous application. Nowadays, due to new insights emerging from nanophotonics, the use of a focused beam is no longer a mandatory condition for generation of the gradient force. The steep hotspots can be induced with an unfocused beam by unitizing plasmonic near-field effects and dielectric resonances. On the other hand, as long as a propagating beam is scattered or absorbed by a micro-object, the scattering force always exists, which can be used to drive the motion of the object. In this regard, to maximize the scattering force, the electric and magnetic resonances, manifesting in the spectral peaks of
Figure 2.Illustration of the basic principles of optical force in optical tweezers using ray optics. (a) A trapping beam is focused with the help of a high-NA objective into the sample plane, and a particle can then be trapped in the focal point of the beam due to the large intensity gradients created. The trapping laser is reflected and refracted through the particle and imparts the momentum to the particle. (b) The scattering force produced by laser reflection pushes the particle along the laser propagation direction. (c) The gradient force caused by the light intensity gradient will pull the particle toward the maximum intensity of the laser. (d) Similar arguments along the transverse direction. (e) For Rayleigh particles, the electric field of the light produces an induced dipole in the particles, which are subject to the optical gradient force pointing toward regions of high field gradients. The validity of the ray optics requires that the particle size is much larger than the wavelength, which is to roughly say at least one order of magnitude larger.
2.1.4 Optical torque
The transfer of the angular momentum of light generates an optical torque on the object. Under the Minkowski energy–momentum tensor, the angular momentum density and its accompanied flux density tensor are expressed by
The angular momentum of light includes OAM and SAM. In quantum mechanics, the angular momentum operators are generators of simple rotations, which here rotate both the amplitudes and the polarization orientations of electromagnetic fields. Intuitively, the rotation of the field amplitudes associates with the OAM, while the rotation of the polarization orientations relates to the SAM. Despite this clear physical picture, neither OAM nor SAM is true angular momentum as pointed out by van Enk and Nienhuis, since their respective rotation operators violate the transversality of electromagnetic waves[59,60]. Nevertheless, both OAM and SAM are physically meaningful, as have been measured by a number of experiments.
The angular momentum density can be decomposed into OAM and SAM components. Specifically, for harmonic electromagnetic fields, the time-averaged OAM and SAM densities, denoted by
Using Maxwell’s equations, it can be directly checked that
Historically, the intensive study of the angular momentum of light appeared in the 1990s, when Allen explicitly showed that a Laguerre–Gaussian beam carries a well-defined angular momentum[42], which could be decomposed into an OAM part associated with the azimuthal phase
To pedagogically elucidate Allen’s discovery, we here consider a light beam propagating in the
For simplicity of mathematical derivations, the
Apparently,
Here,
Concerning the angular momentum flux density of the cylindrically symmetric beam as discussed above, Barnett derived the expressions of the
Apparently, if the light beam is absorbed by a micro-object, part of its OAM and SAM can be transferred to the object. The generated optical torque can then be calculated by integrating the flux density over a closed surface enclosing the object (e.g.,
If the object is transparent and birefringent and does not alter the wavefront of the light beam, only the SAM can be transferred to the object. More precisely, denoting that the time-averaged optical power associated with the polarization change due to the birefringent effects by
2.1.5 Measurement methods for optical force (based on optical tweezers)
Optical force can be measured or calibrated in optical tweezer systems. With directly accessible data being the recorded particle displacements, the force status of the trapped particle is obtained indirectly by correlating the two sets of data, namely, “x” and “F,” through the Langevin equation (Newtonian laws of motion) in fluidic environments. Hence, deduction of the optical force is a two-step process: (1) collecting the temporal trajectories of the trapped particle, and (2) converting “x” data to “F” data. The corresponding experimental setup and the data processing methods are introduced below. On the other hand, optical torques always associate with the change of light beam polarization, the measurement of which is relatively uncomplex compared to that of the optical force, and relevant content is covered in Sec. 3.3.1.
Experimental setup
Typically, an optical tweezer is built on top of a commercial confocal microscope. At the heart of the trapping system is a high-NA objective lens that produces diffraction-limited focal spots. To avoid water absorptions, trapping lasers with wavelengths in the visible and near-infrared regimes are favored, which reduces the heating effects and mitigates photodamage to fragile biological samples. Figure 3 displays an instance of ordinary optical tweezer configurations. Using a beam expander, the trapping laser is expanded to either slightly underfill or overfill the objective, with the aim of optimizing the trapping efficiency by weighing the relative effects of the size of the laser focus against the light power truncation[71]. The optical path of the trapping laser is then coordinated by two dichroic mirrors (
Figure 3.Experimental schematic of the conventional optical tweezers. A simple telescope is used to expand the laser beam to fill the back aperture of the objective. The expanded laser beam, reflected by a dichroic mirror, is coupled into the high-NA objective (lower objective in the sketch) and focused into the chamber. The QPD is placed in a conjugate plane of the condenser objective, collecting the interference signal between incident light and forward-scattered light from the sample. LED light is used to illuminate the sample and imaged with a CCD camera.
In situations that require high-precision measurements of the optical force and torque, or alternatively, when optical tweezers are calibrated for accurately sensing external stimuli, simply visualizing trapped particles using imaging devices is no longer effective. Instead, it is imperative to “track” the moving trajectories of the particles at high sampling rates, by which the trap stiffness can be deduced with particles’ Brownian motion as the reference signal[72,73]. Video recordings could encode the temporal positions of the trapped particle. However, even for high-speed cameras, their sampling rate is ultimately limited by the exposure time and imaging processing technique, which compromises the measurement accuracy considerably[72]. In this context, quadrant photodetectors (QPDs), bearing the advantage of high-bandwidth recording, enter the picture, and they have now been widely adopted in state-of-the-art research for position detection.
Specifically, the QPD should be placed at the conjugate plane to the back focal plane of the condenser, where the collected light pattern unveils the interference between incident light and scattered light from the sample (see Fig. 3). Each of the four quadrants of the QPD produces a voltage signal, denoted by
Data analysis
The Langevin equation describes the stochastic behaviors in fluidic suspensions, and it bridges the two sets of information (x and F) with the following formula[10,74]:
In the 1D Langevin equation (readily extended to other dimensions), the left three terms denote the inertial force, friction force, and optical restoring force in the optical trap, respectively, and on the right-hand side is the contribution from random thermal fluctuations that arise from particle colliding with the surrounding fluids. Note that for spherical particles, the Stokes drag coefficient is a known quantity with
In an overdamped system, as is always the case in fluidic environments (except in high vacuum), the inertia term is dwarfed by both the viscous drag and the optical force, and therefore can be dropped for simplicity. Consequently, taking the Fourier transformation of the times series
In the above formula,
Another method for optical force deduction is based on the energy equipartition theorem, which statistically relates the thermal fluctuation to the averaged energy as
The equipartition theorem applies to all three dimensions. For 3D optical trapping using a single Gaussian beam, the lateral and axial trapping stiffness will differ, which leads to unequal mean square displacement (different level of Brownian diffusion) of the trapped particle along the two directions. Though not explicitly dependent on the viscous drag, this method is intrinsically relevant to the former approach in that the mean square displacement of the particle
2.2 Light-Induced Thermophoretic Force
Thermophoresis is particle motion in fluidic suspensions driven by the temperature gradient, and the ultimate energy source, as far as this section is concerned, is from light absorption. Intrinsically, thermophoresis in air and liquid environments has the same mechanism, that is, to be specific, modification of the particle–medium interface by the spatially varying temperature field[76]. Nonetheless, for historical reasons, scientists took different routes in pursuit of proper descriptions of thermophoretic forces involved in the two fluidic environments, i.e., the photophoretic force in air and the Soret effects in liquids, with the kinetics model specialized for the former and the hydrodynamic treatment favored for the latter[23], which we will address concretely and separately below.
2.2.1 Photophoretic force
Photophoretic force originates from nonuniform absorption and the thermal process of particles suspended in gaseous environments (aerosols), which can push, pull, or drive complex motions of light-absorbing particles, depending on specific physical conditions. Different from the optical force, photophoretic force is based on the momentum transfer between gas molecules and the target particle, where light functions as the energy pump instead of the momentum carrier. Specifically, when an absorbing particle is subject to light irradiation, the scheme of momentum transfer occurs via nonelastic collisions of gas molecules that are unbalanced between hot and cool sides[77].
Obeying Maxwell’s law of velocity distribution, gas molecules bounced off the particle acquire thermal energy related to a statistical mean velocity of
Figure 4.Photophoretic force, which is divided into
In the spirit of momentum conservation, the particle receives a recoil kick from each individual gas molecule through nonelastic collisions, or rather, a local pressure is exerted on the particle pointing opposite to the molecule’s bounce-off direction. The net impulsive force is then obtained by integrating the local pressure over the entire surface, which would be nullified unless asymmetrically heated, with the particle featuring two separate “hot” and “cold” regions, or alternatively, the particle is intrinsically nonuniform in its thermal accommodation coefficient
Assuming a homogenous distribution of the thermal accommodation coefficient across the particle, the photophoretic motion of the particle is purely driven by the
Quantitatively, the expression of the
Contrastingly, in the free molecule regime (
The nonuniformly distributed thermal accommodation coefficient leads to asymmetry in the momentum transfer between the particle and gas molecules, and hence would result in an unbalanced
2.2.2 Soret effects in liquids
Thermophoresis in liquid environments, or rather, the Soret effects, may not be easily embodied as a concrete “force,” since the kinetic theory loses its validity, and what proves convincing instead is the hydrodynamic picture. In general, scientists and researchers would preferably use the concept of “thermal diffusion” and “mass flux” to describe and quantify, respectively, the Soret effects in liquid suspensions[23].
Specifically, a temperature gradient should exist before the Soret effects can take place. Different from photophoresis where this very thermal nonuniformity is assured by the particle absorption, in liquids, the long-range temperature field is more often established through substrate absorption (except for Janus particles), whereas the absorptivity of the particles is not quite relevant. For instance, even transparent particles can be manipulated via Soret effects, provided that the substrate is light-absorptive and the particles possess a nonzero Soret coefficient (which will be introduced below).
With the presence of a spatially varying temperature field, an extra drift of particles could occur on top of Brownian diffusion, typically from the hot to cold side, and the total mass flow can be expressed as[23,86]
Recently, by utilizing the Soret effects in electrolytic solutions, researchers have introduced a real “force” upon suspended particles, which is based on the opto-thermally induced electric field[87,89]. To go from the light signal to the electric field, light–thermal conversion is again the necessary intermediate to imprint the temperature field in liquid suspensions. Afterwards, the trick is to first decorate the target particle with charged micelles, and then trigger the spatial segregation between positive and negative ionic species, which is fostered by their difference in thermophoretic mobilities. Indeed, it is a sub-branch of the Seebeck effects in the liquid domain[88]. More details on the opto-thermoelectric force are provided in Secs. 3.1.6 and 3.2.3.
2.3 Light-Induced Deformation Effects
2.3.1 Optical manipulation on solid interfaces
The aforementioned optical and photophoretic forces are generally applied to manipulate micro-objects in low-adhesive fluidic environments, where adhesion/friction forces are tiny, typically of the order of pN or even smaller. Their use on dry solid interfaces is, however, expected to fail, because the adhesion/friction forces therein are way too strong, easily reaching
Among various proposals for optical manipulation on solid interactions, one group of explorations based on light-induced deformation effects attracts significant interest due to its rich physics at interfaces among nanophotonics, nanomaterials, and solid mechanics and to its promising technological applications. Roughly, light-induced deformation effects are a simplified term that covers a type of phenomenon—an object deforms its shape under the irradiance of light. They necessarily need to convert light energy into mechanical energy. The energy conversion could be mediated by thermal effects, which change the temperature of the object and then induce lattice oscillations (i.e., elastic waves). Alternatively, it can also take advantage of phase transition effects, so that the lattice reconfigurations generate strong stresses to enable shape deformation. During the shape deformation of the object, the adhesion/friction forces act as resistance, which, however, generally cannot overwhelm the deformation, as long as the latter is sufficiently intensive.
Light-induced deformation effects themselves do not automatically render the desired optical manipulation. The realizations of optical manipulation and motion control additionally demand elaborate structural designs and material choices. The research on this topic is diverse and multidisciplinary[81]. Notable exemplifications include the use of a bimorph structure composed of two stacked thin films with large contrasting coefficients of thermal expansion, liquid crystal elastomers and networks, hydrogels, and so on, a detailed review of which is provided in Sec. 4.2. Even though these examples demonstrate versatile motions, such as vibrations, translations, and rotations, the target objects are largely limited to macroscopic dimensions (
Recently, a new solution to manipulate micro-objects on solid interfaces based on using elastic waves induced by pulsed light was reported. Compared with the conventional approaches that are similarly based on light-induced elastic deformations, the essential technical ingredient of this new solution lies in the use of nanosecond pulsed light rather than continuous light, thereby transforming the physical picture from “quasi-static” elastic deformation conceptually based on, e.g., thermal expansion/contraction, to the dynamic deformation picture that requires to take temporal elastic wave evolutions into account. Using this technique, researchers have successfully achieved nearly a full degree of freedom actuation of micro-sized objects on micro-fibers, as reviewed in Sec. 4.1.2. Below, we intentionally highlight the physical mechanisms behind this technique, since they have not been comprehensively reviewed before, and, moreover, the authors of this review have been intensively working on the technique for the last five years. Highlighting it here is a matter of personal taste, and we hope that readers will allow this choice.
2.3.2 Optical manipulation with elastic waves induced by pulsed light
To pedagogically clarify the principle of optical manipulation on solid interfaces driven by pulsed-light-induced elastic waves, we here refer to a concrete 2D physical model, as shown in Fig. 5. A thin microplate is placed on a substrate. The friction force, which is simplified to be a point force, is exerted on the plate when the latter moves on the substrate. Under irradiance of pulsed light, elastic waves are excited due to temperature rising via optical absorption. Note that in the existing literatures on this topic, some specific names for excited mechanical waves, such as acoustic waves, Lamb waves, and Rayleigh waves, can be found, which, nevertheless, can all be grouped under the same name—elastic waves—for clarification. Along with the excitations of elastic waves, the plate deforms its shape and induces the friction force. In such physical processes, to better guide our discussion, we raise two questions to the reader: (i) whether the plate could be driven in the sense that the whole plate translates a distance on the substrate, and (ii) if it could be driven, what are the essential physical mechanisms.
Figure 5.Sketch of a micro-object on a substrate driven by elastic waves induced by pulsed light. A point friction force is exerted on the micro-object when the latter moves on the substrate. Adapted from Ref. [
To approach the proposed questions, we first write the linear elastic equation that describes the elastic deformation of the plate due to the temperature variation
We first point out that, in the absence of the friction force, the excited elastic waves can deform only the shape of the plate, but are unable to drive the plate translation. This is because, without the friction force, the external force in the translation direction vanishes, thus leaving the center of mass of the plate unchanged, that is, the spatial average of
We analyze the friction-induced elastic displacement
The longitudinal modes have the displacement fields almost parallel to their propagation direction (i.e.,
The friction force is the parallel component of the surface adhesive force. It includes the contribution mainly from van der Waals forces, and could also be affected by a variety of surface factors, such as roughness and possibly accumulated surface charges. Therefore, a precise estimation of the friction force from the first principles seems to be impractical. To bypass this difficulty, Tang and co-authors in Ref. [37] introduced a phenomenological model to determine
Summarizing
First, as straightforwardly indicated by the presence of the Heaviside step function in Eq. (34), the friction point moves only in the period when the deformation velocity due to the temperature variation
Second, Eq. (34) implicitly suggests the use of pulsed light to achieve a large displacement distance (as
Last, considering that the energy of a light pulse remains unchanged, the magnitude of
Echoing the two questions raised at the beginning of this subsection, we now answer that: (i) the plate could be driven by elastic waves induced by pulsed light; (ii) the motion necessarily requires both rapid thermal deformations to overcome the friction resistance and considerable asymmetry in the thermal heating and cooling phases to accumulate the net displacement distance.
To concretize these answers, numerical evidences, adopted from Ref. [91], are plotted in Fig. 6. A 2D gold plate with length and height of 10 µm and 50 nm. respectively, in the
Figure 6.Numerical exemplification of motion dynamics of a micro-object driven by excited elastic waves induced by pulsed light. (a) Sketch of the studied problem. A gold microplate with length and height of 10 µm and 50 nm, respectively, in the
3 Optical Manipulation in Fluidic Environments
3.1 Trapping Using Light
In the pioneering works of Arthur Ashkin, it was first demonstrated that a focused light beam was capable of “trapping” micro- and nanoparticles against Brownian motions via the exertion of radiation pressure[7,8]. The proposed experimental setups earn the name “optical tweezer” for their tweezer-like function to seize tiny objects and stably confine their motion within a diffraction-limited region. With continuous developments in this research topic, various light-induced effects other than optical force have been explored and become fast-growing branches of optical trapping technology. Sec. 3.1 is dedicated to reviewing the state of the art of corresponding “branches” and comparing their diversities in both operational principles and conditions.
From Secs. 3.1.1 to 3.1.4, light gradient force and scattering force are utilized to trap and levitate/propel micro-nano objects, respectively, the mechanism of which largely lies upon direct momentum exchange between the incident photon and the manipulated object. Sharing the same principle, the four sections are specialized in their respective field with regard to light field localization/focusing and device configuration.
The heat effect in the first four schemes, in particular, is regarded as an inevitable yet obstructive byproduct with the use of strongly focused and highly intense laser beams, leading to unwanted heat damage of manipulated objects and compromised trapping stability. Different from previous content, from Secs. 3.1.5 to 3.1.7, the heat effect from either absorptive particles or surrounding media would instead play a constructive role, which can be delicately harnessed to drive particle motion or enhance the trapping capability of the established tweezer systems. Surprisingly and counterintuitively, with the presence of the heat effect, the required light intensity for stable trapping could be reduced by several orders of magnitude, depending on the specific tweezer systems[87,92].
In addition, to establish potential wells for particle trapping in liquid environments, stagnation zones (near-zero flow velocity) can be formed by exploiting various hydrodynamic forces, which cancel out each other at specific spots in the light-induced temperature field. This extra method undoubtedly enriches the degree of freedom in light-enabled particle manipulation and will be discussed in detail in Secs. 3.1.6 and 3.1.7.
3.1.1 Conventional optical tweezers
In general, conventional optical tweezers exploit the optical gradient force of a focused light beam to trap particles at its beam center. The optical scattering force, on the other hand, is either harnessed to counterbalance the gravitational force or considered as a destabilizing factor, setting particles into motion along the light propagation direction[7,10]. As the light beam gradually diverges, the transversely trapped particle slips from the trapping site due to stochastic diffusion or radiometric forces[21]. Indeed, the very first prototype of optical tweezers consisted of two counterpropagating light beams (loosely focused) to ensure the nullification of opposite scattering forces, and 3D particle trapping was realized by both the transverse gradient force and balanced axial force[7]. A single beam optical tweezer was later developed, where a highly focused laser beam was implemented to strengthen the axial intensity gradient [Fig. 7(a)][8,10]. As a result, a backward radiation force existed and worked synergically with the transverse gradient force, providing restoring actions that pull the particle towards the trapping center. The harmonic approximation of the as-established potential well assigns the Hookean nature to both transverse and longitudinal gradient forces, which scale proportionally to the particle displacement as
Figure 7.Conventional optical tweezers. (a) Schematic showing the origin of optical gradient and scattering forces in the Mie regime. Note that when the laser is tightly focused (right panel), the particle is subject to an axially backward radiation pressure. (b) Illustration of the potential well of the optical tweezer and its stability criterion. FWHM denotes the full width at half-maximum of the potential well. (c) Experimental setup of the optical tweezer with 3D feedback cooling. (d) Diagram of the feedback mechanism along one direction in (c). The derivative circuit (
There are two criteria concerning the trapping stability of an optical tweezer system, namely, the “depth” and “steepness” of the potential well. As generalized by Ashkin, the potential well should be sufficiently deep that the particle can hardly escape from the trapping site via thermal fluctuation [Fig. 7(b)][8,93]. Mathematically, this criterion can be expressed by
Though proposed more than 50 years ago, the research of optical tweezers is far from reaching the plateau. Conversely, it is marching towards higher levels of efficiency and versatility by incorporating other advanced technologies. For instance, dynamic feedback control of the particle position and the trapping stiffness could be achieved, the prerequisite of which is ultra-precise particle tracking[72,96]. Quadrant photodiodes are most often adopted to extract the position signal from the interference pattern between the undiffracted light beam and scattered light by the trapped particle (refer to Sec. 2.1.5)[72,97]. Needless to say, precise (
In recent years, holographic optical tweezers (HOTs) have been trending, owing to their capability of parallel and dynamic manipulation of micro-nano objects using a single light source. Naturally extended from single-beam optical tweezers, HOTs utilize dynamic diffractive elements such as spatial light modulators (SLMs) to shape the input light field into arbitrarily distributed outputs, and multiple particles could be simultaneously trapped within individually separated 3D trap arrays by optical gradient forces [Fig. 7(e)][93,94,102]. Moreover, to dynamically update the field pattern in a step-by-step manner, nontrivial structures with large aspect ratios (e.g., nanowires) initially free-floating in liquid suspensions can be transported and assembled with the use of HOTs [Fig. 7(f)][103]. To stably trap and drag the nanowires, the profile of the trapping potential should be spatially extended along the length direction of each individual nanowire to maintain their orientations and prevent them from drifting in the liquid suspension, highlighting the advantages of adopting HOT. More intricate functions can be integrated into the HOT platform. For instance, after assembly of the nanowires, post-processing techniques such as cutting and nanowelding, both of which are manifested in Fig. 7(f), can be implemented by incorporating high-power or pulsed lasers on top of the existing trapping beam, permanently transforming the initially separable nanowires into complex and monolithic structures[104–107]. Later, when deposited on solid substrates, they can be constructed into functional electronic or nanophotonic devices.
3.1.2 Plasmonic tweezers
Using optical tweezers to trap particles in the deep sub-wavelength regime (
Figure 8.Plasmonic tweezers. (a) Schematic of particles trapped in potential wells with radius of 1
However, to constantly push the boundaries at the “bottom” (Feynman’s speech[9]), the demand is bound to increase for optical manipulation of ever-smaller objects such as biological molecules and single atoms. The plausible solution using conventional optical tweezers requires either increasing the laser power or reducing the laser spot (enhancing the laser focus), which are detrimental to the target samples, hard to implement, and ultimately limited by diffraction. In recent years, researchers have turned to a robust and more cost-efficient optical trapping scheme, that is, to combine plasmonics with optical tweezers.
Surface plasmon polaritons (SPPs) are surface waves supported by planar metal–dielectric interfaces. The large effective index, or
Compared to direct light field modulation on a structureless metal surface, substrate patterning is more widely adopted to implement 3D plasmonic trapping. Figure 8(c) shows that discretized SPP fields can be supported by gold micro-discs (fabricated on the glass substrate) and are coupled from non-focused incident light in the Kretschmann configuration[116,117]. Indeed, the plasmonic structures function as micro-nano objectives that compress the incident light field more effectively than the bulky counterpart to sub-wavelength volume, whose transverse and vertical dimensions are restrained by structure boundaries and the evanescent-wave nature, respectively[14]. The generated potential wells coincide with the prescribed plasmonic patterns, where colloidal particles can be trapped with slight forward displacement due to the in-plane scattering force. Alternatively, localized surface plasmons (LSPs) supported by sub-wavelength metallic structures can also be harnessed for particle trapping, which naturally feature strong field localization at plasmonic hot spots in all three dimensions and possess the extra advantage of direct light coupling[108,109,118]. Among myriad LSP configurations, gap antennas appear to be the most promising candidates, since they can enhance a local electric field by up to four orders of magnitude[119]. Figure 8(d) shows a plasmonic tweezer built upon two closely placed gold nanopillars[120]. Compared to the case with the glass substrate (left panel), the stochastic motion of the Rayleigh particle is significantly suppressed when the gap plasmons are excited, since they provide an enhancement factor of
3.1.3 Resonance dielectric tweezers
While plasmonic tweezers provide powerful tools to immobilize sub-wavelength particles by exploiting strong light confinement beyond the diffraction limit, they generally suffer from Joule heat associated with the large
Figure 9.Resonance dielectric tweezers. (a) Schematic of a 1D silicon photonic crystal resonator used for optical trapping. (b) Simulated mode profile of the photonic crystal resonator in (a) at resonance. The electric field magnification and localization are characteristic of the cavity mode of a dielectric resonator. Black arrows denote the magnitude and direction of the local optical force. (c) Schematic of the multiplexed optical trapping based on an all-dielectric metasurface supporting quasi-bound states in the continuum in each of its unit cells. Nanoparticles would be trapped at the gaps of the elliptical nanoantenna pairs (the unit cell), where the local electric fields are strongly enhanced due to the lack of out-coupling channels. (d) SEM image of a nanocuboid array fabricated with amorphous silicon supporting anapole modes. (e) Calculated profile of the optical force upon 100 nm bead in the plane
Recently, researchers are increasingly paying attention to lossless nanoresonators so as to further reduce the device footprints with respect to micro-scale PhC cavities. In 2021, Yang et al. proposed an all-dielectric metasurface-based nanotweezer, where elliptical silicon resonators pair up to form symmetry-protected quasi-bound states in the continuum with nearly vanishing outgoing radiations[128]. By adjusting the tilt angle between the resonator pairs in each unit cell, the Q factor of the paired nanoresonators can be tuned accordingly. Specifically, with the tilt angle kept as small as 5°, a more than 100-fold local field enhancement could be achieved in the trapping sites, owing to the suppressed out-coupling of near-field dipole mode to the radiation channel[129,130]. Given that each paired element occupies only a few hundred nanometers in all three dimensions, a multiplexed trapping scheme could be readily established by arranging the elements into an arrayed metasurface, which solves the scalability issue [Fig. 9(c)]. Leveraging a similar approach, through the destructive interference between electric and toroidal dipole moments in the far field[131–133], anapole mode as another scattering dark state was harnessed to implement strong near-field light concentration at resonance, and light capture of sub-100 nm particles was reported [Figs. 9(d) and 9(e)] with a relaxed incident field requirement in comparison to conventional optical tweezers plus the advantage of minimized heating effects compared with plasmonic tweezers[124,134].
3.1.4 Integrated optical tweezers
In the previous two sections, plasmonic and dielectric metasurfaces functioning as optical tweezers are given adequate attention, which, to some extent, can be regarded as having achieved a certain level of integration on planar architectures. Following a more standard definition used in integrated optics and also from a practical perspective, in this section, we mainly focus on optical tweezers established on waveguide or optical fiber platforms.
Though most waveguides do not possess open spaces for direct light–matter interaction, evanescent fields with light tunneling through high-index sidewalls into the low-index surrounding medium can be utilized for particle trapping. In recent years, parallel and dynamic particle manipulations have been extensively reported on various waveguide platforms including slot waveguides, PhC waveguides, plasmonic waveguides, etc., where optical gradient forces are imposed via evanescent fields featuring exponential decay[16,135–137]. Moreover, light waves transmitted in guided modes or whispering gallery modes would additionally provide optical scattering forces along the light propagation direction, given their traveling wave nature[127,138,139]. As schematically displayed in Fig. 10(a), apart from being transversely trapped by the optical gradient force, the particle also experiences a longitudinal push and consequently circulates around the ring resonator at a constant speed[140]. The temporal evolutions of the
Figure 10.Integrated optical tweezers. (a) Schematic of a micro-ring system with a trapped dielectric particle moving around on top of it. Incident light is coupled from the left port into the bus waveguide. (b) Recorded time-dependent
Alternatively, integrated optical tweezers on fiber platforms are another trend leading towards in vivo technologies. The extremely slender and flexible structure of optical fibers is tailor-made for intruding into hard-to-access environments in the human body such as blood vessels and living tissues. More importantly, optical fibers serve as “pipelines” that transmit both incident trapping light and detected sample signals independently, which is key to the function of endoscopes[142–144]. Owing to the relatively small NA (
3.1.5 Thermophoretic tweezers
In Sec. 2.2, phenomena of thermophoresis are categorized into photophoresis and Ludwig–Soret effects, based on the nature of fluidic environments. Following the same classification, here we introduce light-induced thermophoretic tweezers in the two schemes separately.
Photophoretic tweezers
Thermophoretic tweezers in an air environment, or rather, photophoretic tweezers, could trap light-absorbing particles in local minima of light intensity. As discussed in Sec. 2.2.1, a net kick would be received by the illuminated particle, pointing from the hot side to the cold side. Utilizing this thermophobic feature, a potential well could be established by creating the asymmetry of irradiation, where light absorbing particles can be trapped in the intensity dark region surrounded by “repelling bright walls”[152].
In 1982, Lewittes et al. first reported radiometric levitation of micro-particles, in which a Gaussian beam (
Figure 11.Thermophoretic tweezers. (a) Experimental setup of the optical vortex pipeline for long-range particle delivery. Inset shows a photograph of the transverse trapping of an absorbing particle that is slightly displaced from the vortex center due to gravitational drag. (b) Schematic of remote particle manipulation. (c) Calculated and measured light intensity profile along the axial direction within a paraxial aberrated focus.
Indeed, apart from doughnut beams, light fields with alternating dark and bright regions of light intensity could also be found in the focal volume of an aberrated lens[153]. By carefully arranging the input Gaussian beam and the receiving plano–convex lens, near the theoretical Gaussian focus (
Thermophoretic tweezers in liquids
In liquid environments, Soret effects come into play by counteracting Brownian motion and introducing extra thermal diffusion[23,76]. With nonuniform temperature distribution, the steady-state particle concentration gradient is given by
A more delicate scheme termed as the opto-refrigerative tweezer was reported in 2021 by Li et al. [Fig. 11(g)][159]. Instead of using a laser to inject heat, this work exploits laser cooling to take away phonons and create a cold region right at the laser focus spot [Fig. 11(h)]. The localized laser cooling was realized through anti-Stokes fluorescence of ytterbium-doped yttrium lithium fluoride (Yb:YLF) crystals, which were dispersed on a glass substrate and submerged into heavy water to minimize laser absorption. The concept of opto-refrigerative tweezers is inspiring in that it directly offers a solution to light manipulation and in situ study of fragile and heat-sensitive objects. For example, Fig. 11(i) shows that the quenching effect of fluorescent polystyrene (PS) nanoparticles is greatly subdued in the opto-refrigerative tweezer compared with the conventional optical tweezer.
Since the Soret effect is intrinsically an interfacial effect, the magnitude and sign of the Soret coefficient could be tuned by engineering the particle-solvent interface[160,161]. For the case when
3.1.6 Opto-thermoelectric tweezers
Inspired by thermophoretic effects in liquids, the concept of opto-thermoelectric tweezers was first brought up in 2018, where ionic species are introduced to migrate under the temperature gradient and establish an electrostatic field[87]. In this work, colloidal particles were chemically decorated with charged surfactants, and the electric force could be readily utilized as the trapping force for the proposed tweezer system.
In corresponding works, cetyltrimethylammonium chloride (CTAC) is the most commonly used surfactant. When added to colloidal suspensions, CTAC molecules dissolve into positively charged micelles and
Figure 12.Opto-thermoelectric tweezers. (a) Schematic of the solution components when added with CTAC. Left to right: colloidal particles decorated with CTAC, CTAC micelles,
In general, the versatility of opto-thermoelectric trapping is demonstrated through either the configuration of the light field or the thermoplasmonic substrate, which are two independent factors determining the profile of the temperature field. In the first approach, digital micromirror devices and SLMs have been employed to create arbitrarily shaped light fields, achieving parallel and dynamic particle manipulation [Fig. 12(c)][167,168]. On the other hand, special arrangement of the thermoplasmonic substrate could also achieve holographic particle manipulation, with the substrate geometry being transferred to pattern the colloidal assemblies, as shown in Fig. 12(d)[89,169]. Also, by modulating both the light field and the absorptive substrate, directed particle transportation and recapture are possible among different trapping sites[89,169].
It should be noted that, although colloidal particles are typically trapped at plasmonic hot spots, the effect of the optical gradient force is trivial with loosely focused low-intensity light beams, as mentioned before. Indeed, when transferring the proposed scheme from plasmonic substrates to transparent substrates (e.g., glass), or conducting the same experiments without adding ionic surfactants, no stable trapping could be observed[167,169].
3.1.7 Opto-thermoelectrohydrodynamic tweezers
In previous sections, force analyses are mainly conducted over suspended particles as they are trapped or propelled through interaction with external fields (light field, temperature field, electric field, etc.). The truth is, the solvent, which constitutes the hydrodynamic environment of suspended particles, can also be influenced and set in motion by the applied fields following the Navier–Stokes equations. The resultant hydrodynamic flow perturbs the suspended particles in the same way as it induces the Brownian motion and thermophoretic effects[170,171]. It can be expected that once the flow field is well organized and oriented, the stochastic motion of the particles would surrender to more directed and predictable motion patterns[172], which is the foundation of particle trapping and manipulation. And this time, the force status of the liquid medium would become the first concern.
In 2016, Ndukaife et al. developed a hybrid electrothermoplasmonic tweezer system that integrated functions of both long-range particle delivery and near-field particle trapping[25]. While the latter function relies on the enhanced optical gradient force at plasmonic hot spots, which has been discussed in earlier content, the well-directed particle delivery towards trapping sites is realized through engineering the flow field. As sketched in Fig. 13(a), upon nonuniform laser illumination, a microfluidic flow termed the eletrothermoplasmonic (ETP) flow is induced with the synergetic effect of the temperature gradient and the alternating electric (a.c.) field. According to Refs. [24] and [173], a non-isothermal fluid is embedded with non-zero free charge, permittivity and conductivity gradients [
Figure 13.Opto-thermoelectrohydrodynamic tweezers. (a) Optical setup of the hybrid electro-thermoplasmonic tweezer. The arrows indicate the direction of the ETP flow. (b) Mapping and vectorial plot of the measured flow velocity. The maximum flow velocity exceeds
Electro-osmotic flow is another hydrodynamic effect boosted by the application of the a.c. (or d.c.) electric field, denoting the slip of ions in the electric double layer adjacent to the charged electrodes[174]. One of the prerequisites of electro-osmosis is the existence of a tangential electric component, which could be accomplished in a vertically applied field by introducing defects to the planar electrodes (e.g., virtual electrodes by light-patterning of photoconductive layers)[175,176]. Hong et al. proposed that, on top of a plasmonic nanohole array, the tangential component of the a.c. electric field could cause electro-osmotic flow directed away from the nanohole array, which counterbalanced the inward ETP flow (the laser illuminated area is inside the nanohole array) and formed stagnation zones [Fig. 13(c)][177]. Suspended particles could be trapped in the stagnation zone with balanced counterflows[178,179]. Moreover, by translating the laser spot, the trapping sites would evolve accordingly, which always locate several micrometers away from the plasmonic hot region, as exhibited in Fig. 13(d). Therefore, trapped particles were free from both photo and thermal damage, and the possible influence of the optical gradient force can be ruled out. An extra degree of freedom regarding particle manipulation lies in the dependence of electrohydrodynamic force on the applied electric field. By tuning either the magnitude or frequency of the a.c. field, the trapping dynamics would change correspondingly and so would the positions of the trapping sites[25,177].
3.2 Optical Axial Manipulation: Pulling Using Light
While optical radiation pressure has long been used to push objects along the direction of light propagation, the reversed case, that is, to pull the object all the way towards the light source, is rather counterintuitive. The following sections are devoted to this extraordinary event of pulling using light, where optical tractor beams based on optical force and photophoretic force are covered in Secs. 3.2.1 and 3.2.2, respectively. In Sec. 3.2.3, a novel scheme of light-assisted pulling is discussed, which utilizes the opto-thermoelectric effects in micro-fluidic systems.
3.2.1 Optical pulling
In single-beam optical tweezers, the trapping force in the axial direction, which relies on a strong gradient force overcoming the radiation pressure, functions to “pull” the particle backward towards the axial intensity maximum[8,10]. However, this pulling scheme works within a rather short range, featuring a single static equilibrium point that stops the particle from moving further upstream towards the light source. To achieve optical traction over longer distances, in general, one can think from the three perspectives: (1) structuring the incident electromagnetic field, and (2) modifying objects or (3) the surrounding media[180,181].
Researches using structured light have been enhanced by the development of SLMs, and so has the field of optical manipulation. For instance, optical conveyor beams could be constructed by superimposing coherent Bessel beams generated by an SLM[182]. The resultant light beam possesses periodic intensity variations along the light propagation direction, and particles could be delivered either downstream or upstream by imposing time-dependent phase offsets among the constituent Bessel beams, to which the axial intensity of the conveyor beam would be modulated accordingly. In this scheme, retrograded particle delivery was realized by “retreating” the conveyor beam together with its axial intensity maxima towards the light source, whereby the particle would follow the same retreating pace and move upstream under the influence of the axial gradient force. Alternatively, the optical scattering force, though counterintuitive, can also be directed to implement optical pulling. In 2010, Lee et al. demonstrated the holographic construction of optical solenoid beams with spirally evolved intensity maxima, the wavefronts of which could be inclined independently in a retrograde direction relative to beam propagation, thus leading to negative radiation forces enabled by the reversed phase gradients [Fig. 14(a)][183]. To construct a more generalized picture of optical pulling force, Chen et al. considered the case of a single Bessel beam (with a vanishing intensity gradient along the optic axis) interacting with individual particles[4]. The diagram in Fig. 14(b) shows that particles would experience backward radiation pressure only when the projected axial momentum of the re-emitted irradiance surpasses that of the incident beam. In the spirit of linear momentum conservation, the illuminated particle would be subject to a backward recoil force. However, upon multipole interference, the situation favoring forward scattering is rare, which poses strict constraints regarding the particle dimension (relative to the wavelength), permittivity, permeability, and the
Figure 14.Optical axial manipulation: pulling using light. (a) Optical solenoid beams with tilted wavefronts. From left to right are three circumstances where the local
For the second approach, chiral particles have been widely exploited to couple the light angular momentum to mechanical linear momentum. Sometimes, with a delicate arrangement of the particle chirality as well as light polarization, this angular-to-linear momentum cross-coupling can give rise to the optical pulling force[184–186]. Particles with negative polarizability can be propelled against the light propagation direction by either the optical gradient force or scattering force[187,188].
In contrast to the former two approaches, the last approach places emphasis on the surrounding media, so that the incident light and particles can be chosen more freely. Metamaterials with hyperbolic dispersion support cross-shaped volumetric modes, whose high densities of state open up scattering channels and implement steep light intensity gradients in the underlying substrates, readily to be harnessed for optical pulling[189,190]. Moreover, leveraging the same principle as in Ref. [4], researchers have illustrated that asymmetric excitation of SPPs could give rise to a backward recoil force, this time without redundant prerequisites imposed on manipulable particles or the incoming light field[181]. In brief, when a Rayleigh particle is placed in the proximity of a metallic surface, a rotating dipole is induced that favorably couples into the forward propagating SPPs [Fig. 14(c)], leaving the rest of the story easily interpretable by the law of momentum conservation. Owing to their extraordinary guided modes, tunable band structures, and momentum topology, PhCs possess a large parameter space exploitable for the realization of optical pulling. For instance, by utilizing a PhC with an unusual concave-shaped topology of light momentum, a structureless plane incident wave, upon scattering of the target particle, can couple to off-axis modes that nevertheless correspond to a larger net axial component of light momentum, thus generating a backward recoil force in the form of scattering force[191]. Alternatively, sustainable and long-range optical pulling can be provided by the gradient force in a PhC supporting self-collimating Bloch modes, the interplay between which and the particle locally generates a negative gradient region to pull the particle in a self-adaptive fashion[192].
Given the broadness of its parameter space, there are still plenty of research works dedicated to the last approach, where optical pulling forces are provided by waveguide mode conversion[193,194], backpropagating beams[195,196], or through multi-body coupling[197]. For detailed information, readers are referred to more exclusive reviews such as Refs. [22] and [198].
3.2.2 Photophoretic pulling
The phenomenological interpretation of photophoresis typically depicts the image of an aerosol particle being pushed from the hot side to the cold side in the presence of uneven heating in a gaseous environment[199,200]. The convention is to assume the near side of the particle to the light source as the hot side and the shaded side as the cold side, so that the photophoretic force will be directed along the electromagnetic energy flux, which is indeed photophoretic pushing. However, the reversed case, termed photophoretic pulling, is also possible under certain circumstances.
As discussed in Sec. 2.2.1, photophoretic effects can be divided into two categories:
In the first scheme harnessing the
Considering particles and the atmosphere in the Mie (
For the second scheme, the accommodation coefficient is defined as
3.2.3 Opto-thermoelectric pulling
For strongly light-absorbing particles, both the optical gradient force and photophoretic force imparted on them tend to be repulsive. The former case is on account of the enlarged scattering-plus-absorption cross section[113,114]; the latter is the result of heat generation predominately at the illuminated side[201]. To inflict pulling force on these particles through light irradiation, a counter effect that directs the particle motion opposite to the energy flux or along the temperature gradient should be exploited. Recently, such a scheme has been realized by researchers using self-induced opto-thermoelectric force of silicon nanoparticles[205].
As depicted in Fig. 14(f), when irradiated by laser power, a considerable temperature gradient can be generated inside a silicon particle pointing from the rear pole to the illuminated front, since amorphous silicon features both strong light absorption and relatively low heat conductivity (1.8 W/mK). Subsequently, in an aqueous solution, a thermoelectric field could be established with the presence of ionic CTAC surfactants, the process of which is the same as that discussed in Sec. 3.1.6. Note that the direction of the generated electric field is opposite to the
Apart from opto-thermoelectric force, other effects such as electro-thermoplasmonic force[177,175] and electro-osmosis[175], both introduced in Sec. 3.1.7, can also direct particle motion towards the hot regions; only that in published works, they are mainly used to foster directed transportations parallel to the substrate plane instead of along the optical path. Still, they hold potential to achieve light-induced pulling in more delicate microfluidic systems.
3.3 Optical Lateral Manipulation
In general, lateral actuation requires in-plane symmetry breaking in the light–matter system, as opposed to the concept of trapping. For instance, in a well-established optical tweezer, a dielectric particle isotropic in both its geometry and refractive property will be trapped stably at the laser focus. The asymmetric factor in the light field such as polarization and wavefront chirality, or in the particle in the form of elongation, handedness or birefringence will disequilibrate the light–matter ecology, which, in the context of optical trapping aiming at particle immobilization, would be detrimental. However, the same factor could be highly exploitable for the purpose of object actuation. In the following two sections, we mainly focus on the asymmetry in the light field and the interacting object as the key enablers for in-plane optical manipulation.
3.3.1 Torsional optomechanics
Apart from the linear momentum that is best defined for plane waves (eigenmodes for the
Figure 15.Optical lateral manipulation enabled by light field and structural asymmetry. (a) Schematic of light carrying SAM (left) and OAM (right). (b) Rotation of a nanodumbbell levitated in a circularly polarized beam. (c) Power spectrum density of the rotational motion in (b). The peak at 2.2 GHz corresponds to the rotation frequency of 1.1 GHz. (d) Experimental setup for producing holographic optical traps carrying transverse phase gradients. (e) Relationship between the traverse speed of a captured colloidal particle
In the late 1990s, researchers verified that circularly polarized vortex beams, carrying a total angular momentum of
Non-spherical particles experience torques in both linearly and circularly polarized light fields. Given that their polarizabilities are tensors in nature, the generated dipoles are not aligned parallel to the electric field, hence leading to a torque of
Helically phased light beams are endowed with OAM[221]. In Sec. 3.1.5, we introduced vortex beams (linearly polarized) being used for photophoretic trapping, where the absorbing particles are confined within the enclosed dark regions, exhibiting no torsional movements. Indeed, the capability of optical vortices to transfer OAM is largely compressed in those cases, given that the manipulated particles are held tightly on the beam axis and too small to “sense” the whole beam profile[103,222,223]. For off-axis cases, transparent particles illuminated by vortex beams would orbit around the optical axis while being trapped within the bright annulus[222,223]. Moreover, exploiting both the SAM and OAM in a circularly polarized vortex beam, researchers have observed simultaneous spinning and orbiting of individual particles around their own axes and the beam axis[222]. It is worth noting that the torque imparted on the particles mainly originates from the transverse phase gradient of Laguerre–Gaussian beams, or rather, the lateral scattering force associated with the linear momentum flow in the azimuthal direction:
3.3.2 Meta-vehicles: actuating via structural asymmetries
In the previous section, the dynamics of a dipole rotating in a light field with linear polarization were attributed to the symmetry breaking in the polarizability tensor, as in
In 2010, Liu et al. developed a light-driven motor, the building blocks of which are gammadion-shaped plasmonic structures embedded in silica microdiscs[226]. Upon illumination of a linearly polarized beam, the gammadion strongly scatters light in directions determined by the excited plasmonic mode profiles, corresponding to incident wavelengths [Fig. 15(f)]. Owing to the electron inertia, relative phase retardations were induced among the currents at different arms of the gammadion as source terms, which are projected to the re-emitted light. Consequently, the scattered light field is endowed with extra angular momentum by the helically distributed phase profile. As compensation, the gammadion receives a recoil torque to maintain the conservation of momentum, which functions as an engine (either individually or collectively) to fuel the rotational motion of the whole structure [Fig. 15(g)]. Likewise, the linear momentum of incident light can be transformed to mechanical angular momentum through crossed momentum transfer, provided that the interacting object features a chiroptical response to the electromagnetic field[227–230], and the sign of the lateral force can be switched by simply reversing the particle handedness[227]. To dig further into the fundamental physics, this feature stems from the concomitant transition of electric and magnetic dipoles, which is shared by structures with neither the center of inversion nor mirror symmetries (the definition of chirality)[228,231]. In this way, the lack of helicity in incident light can be reproduced by the helicity of the structures. Similarly, by utilizing the asymmetry, or rather, the chirality of microstructures, micromotors can be constructed under a uniform illumination of incoherent light. Instead of through the momentum transfer between the light field and matter, this time the driving torque is provided by surface tension forces at liquid–air/solid interfaces not directed across the centroid (non-zero moment arm), which demonstrates the generality of symmetry breaking in achieving rotational motions[232].
Janus particles possess two distinct properties across their surfaces, the synthesis of which is one of the prevailing methods to create structural asymmetry. Very often they are present as dielectric particles half-coated with thin metal films so as to maximize the contrast between the two opposite surfaces. For an individual Janus particle, typically a few micrometers in diameter, captured by an optical tweezer, the dielectric hemisphere would be attracted to the beam center due to the optical gradient force. On the other hand, the metallic hemisphere would be repelled from the light intensity maxima by the dominant scattering-plus-absorption force. Consequently, the dynamic interplay between the attractive and repelling forces would forcibly adjust the orientation of the Janus particle, and, with extra perturbations to break the symmetry along the dielectric–metallic boundary face, self-navigation and propulsion of the Janus particle would occur in the plane transverse to the light propagation[233,234]. Moreover, the two hemispheres of Janus particles also differ in opto-thermal efficiency, which induces a well-directed temperature gradient pointing from the transparent side to the absorptive side, and various thermally driven processes such as the Soret effect or thermocapillary effect, and thermoelectric drift would occur thereafter, readily to be harnessed for directed particle delivery[204,235–237]. Figures 15(h) and 15(i) illustrate such an example of an opto-thermoelectric microswimmer[204]. In a defocused laser beam and with the presence of CTAC surfactants, a local electric field forms near the illuminated Janus particle (positively decorated), which is propelled in the direction of the temperature gradient [Fig. 15(h)]. The self-propelled circulation is further demonstrated in Fig. 15(g), where a focused laser beam is used instead. As a result of the concrete temperature distribution, the radial and azimuthal components of the electric field provide the centripetal (
Besides Janus particles and other kinds of micro-nano objects with a high extent of asymmetry intentionally introduced in the particle geometry/compositions, minor asymmetries that function as perturbations can translate into evident and regular rotations of particles by utilizing the criticality of the surrounding fluids[238]. Specifically, through light-induced absorption, demixing of a critical liquid mixture can produce a diffusiophoretic force that counters the restoring force and pulls the particle out of its trapping center in an optical tweezer, and in the azimuthal direction, provides a bias for rotation with the presence of minor structural asymmetries. For particles that possess perfect structural symmetry, the asymmetrical bias necessary to trigger the lateral motion should be provided by the light intensity profile or the derivative physical fields through, for instance, the deviation of the light beam from the particle center[239,240].
4 Optical Manipulation in Solid Environments
As the antithesis of Sec. 3, which discusses optical manipulation in the fluidic domain, this section concentrates on the implementation of optical manipulation in the solid domain. Two major challenges come along with the change of the working scenario. First, in solid environments, the resisting force (e.g., van der Waals force) exerted upon micro-nano objects increases dramatically compared to that in fluids, typically reaching the scale of
4.1 Driving Using Pulsed Light
In Sec. 4.1, we introduce four different actuating mechanisms induced by pulsed light irradiation, which involve the pulsed optical force (Sec. 4.1.1), elastic waves excited in actuators (Sec. 4.1.2) or the substrates (Sec. 4.1.3), and the transient light–thermal effects (Sec. 4.1.4). By virtue of the pulsed nature of the light source, the pivotal physical processes involved in the four scenarios all exhibit transient dynamics and impulsive characteristics. The first scheme, namely, the pulsed optical force, is an immediate extension of the conventional optical force typically discussed under the CW light framework. The last scheme is novel and entails intense light–matter interaction, yet a general theory accounting for the experimental phenomena is still lacking, and the particles should experience thermal ablation before the actuation takes place. In comparison, the opto-thermoelastic wave manipulation, the theory of which is introduced in Sec. 2.3, establishes a distinct picture that connects multiple physical fields with rigid and unambiguous coupling relations, and is capable of inducing multi-degree-of-freedom locomotion with the presence of
4.1.1 Pulsed optical force for stuck particle ejection
Compressing electromagnetic energy into pulsed forms brings about tremendously high peak power, which could be several orders of magnitude larger than average power, depending on the pulse repetition rate and the extent of “compression” in the time domain. In the meantime, the optical force of a pulsed laser would inherit the temporal evolution of the impulsive power flux, exhibiting peak values that are significantly elevated compared with the CW counterpart. Hence, it is possible that at some point of the pulse’s rising edge, the transient optical force could surpass the strength of the van der Waals adhesion. Inspired by this deduction, researchers have utilized pulsed lasers to eject particles initially attached on a glass substrate, which could then be captured and levitated by a conventional CW light optical tweezer after detachment[241,242]. In corresponding works, the axial gradient force of the pulsed laser would “kick” the attached particle in a pulsed fashion, and the detachment would not occur until the transient kick surmounts the strength of van der Waals force, which is estimated to be at nanonewton level in experimental scenarios (the situation here differs from those where actuators locomote “along” the substrate surface and experience stronger adhesive forces at
4.1.2 Actuator-supported elastic waves for multi-mode manipulation
Despite the
General actuation principles
A general picture of the driving mechanism is depicted in Fig. 16(a). In brief, upon pulsed light irradiation through the microfiber, the plasmonic actuator absorbs the evanescent light tunneling through the fiber sidewall and converts it to heat, which subsequently couples to the guided elastic waves propagating in the actuator. The essence in the actuation lies in the interplay between the surface friction (external force) and elastic waves (internal force) during the impulsive heating and cooling cycles, as summarized in Ref. [37]. In the fiber–plate system shown in Fig. 16(b), assuming that elastic waves mainly propagate along the
Figure 16.Spiral, rotational, and translational motions induced by actuator-supported elastic waves. (a) Illustration of the driving mechanism in the opto-thermoelastic scheme, which centers around the interplay between surface friction and the thermally induced elastic waves, with the enabling elements being pulsed light, absorption, and the heating and cooling cycles. (b) Schematic showing the zoomed-in configuration of a fiber-microplate system. The shaded region denotes the contact surface at which the friction force functions as a “fence,” blocking the transmission of thermally excited elastic waves. The inset table links the motion states with the relation between the effectively absorbed power
Notably, from the perspective of the elastic wave equation, since the friction force and transient light absorption are both source terms contributing to the net displacement fields (refer to Sec. 2.3), a threshold light power
Rotation
Further delving into the experimental observations, researchers have found that the “asymmetry” in the fiber–plate system is the necessary bias required to activate the actuation. Specifically, for rotational locomotion, the lateral asymmetry demarcated by the fiber–plate contact line determines the sense of rotation of the actuator in that its short side, or more vividly, the short wing (SW), would always “drag” the long wing (LW) to advance along the fiber’s circumference, regardless of the relative pose of the microplate [Fig. 16(e)]. A phenomenological interpretation was first given by Lu et al., stating that the geometric asymmetry would be accompanied by unequal propagation lengths of the elastic waves on the two wings, and the longitudinal oscillation in the SW should dominate that in the LW due to less attenuation[35]. The effect of asymmetry is also implicitly embedded in the term
Translation
Following the same deduction, the translational degree of freedom is unlocked by the synergetic effects of the pulsed-light-excited transverse acoustic modes and the bias caused by the axial asymmetry. In 2021, Linghu et al. demonstrated the actuation of plasmonic nanowires on microfiber platforms, as shown in Fig. 16(g)[36]. Owing to the small width of nanowires (a few hundred nanometers), the necessary bias required by the rotational degree of freedom is missing, thus making the translation of the actuator more explicit in the “purified” composite locomotion, as opposed to the hybrid motion observed in the plate–fiber configuration. In the nanowire–fiber system, an intriguing feature of the leftover eigenmode (i.e., translation) is that the movement direction of the actuator flips upon a change of the light source wavelength, while the direction of light propagation is kept constant [Fig. 16(g)]. This phenomenon can be accounted for by adopting the electromagnetic theory: the interference patterns between the excited mode in the plasmonic nanowire and the guided mode in the microfiber have different spatial distributions at different wavelengths. Specifically, at 1064 nm, the electric field intensity peaks at the frontend of the nanowire (the far end relative to incident light), whereas at 532 nm, the electric field mainly concentrates at the backend. Thereupon, at the heating edge in the former case, the frontend of the nanowire exhibits stronger photothermal effects, associated with more intense thermal expansions both along and vertical to the fiber–nanowire interface, leading to a net forward motion of the nanowire centroid and a gradient shrinkage of the interfacial gap, which is the most profound at the nanowire’s frontend [top two panels in Fig. 16(h)]. As the cooling process sets in, the earthworm-like translation of the nanowire is expected, in which its frontend possessing the smallest interfacial gap is anchored as the most adhesive region and its backend crawls forward, conforming to the general tendency of contraction [lower two panels in Fig. 16(h)]. In consequence, the nanowire locomotes translationally in a way that the more heated end drags the less heated end to advance along the fiber axis in a pulse-wise manner, indeed following the same regulation as that in Fig. 16(f). The underlying mechanism is the asymmetric excitation of the transverse elastic waves along the nanowire length, which is further assisted by the adhesion force, manifesting the delicate duality of the latter in both resisting and facilitating the solid-domain locomotion in the opto-thermoelastic wave coupling scheme[37]. The elastic wave nature of this mechanism is unveiled by probing the local displacement of the nanowire at nanosecond resolution, as shown in Fig. 16(i). During a single heating–cooling cycle, an initial impulsive thermal expansion is followed by fluctuant contractions in the cooling period, which indicates the back-and-forth oscillation of the transverse elastic waves and should be accompanied by a similar fluctuant friction force that constantly flips its signs. The gradual weakening of the oscillation marks the elastic attenuation[37]. Apart from the asymmetric distribution of light absorption, nonuniform contact between the actuator and the fiber appears as a second source of the axial bias needed for translational locomotion, and correspondingly, it is the contact side that drags the non-contact side to crawl forward[37].
Other motion patterns
Rotational and translational locomotion of the microplate/nanowire is induced by the longitudinal and transverse acoustic modes, respectively. Other than the two fundamental locomotion modes and hybrid spiral motions, several other motion patterns have been reported. Recently, Lyu et al. have demonstrated the in-plane rotation of gold microplates on microfibers, which describes the phenomenon that the microplate turns by a certain angle around an axis perpendicular to its base plane upon illumination of pulsed light, as shown in Fig. 17(a)[5]. The blue dot denotes the rotation center, which, in a quantitative sense, essentially stays still, while the rest of the structure picks up nonuniform in-plane displacements proportional to the distance between the rotation center and the local volume element. This time, two sources of asymmetry provide the bias that guides this locomotion, namely, the geometric asymmetry in the two wings and the absorption asymmetry along the fiber–plate contact line [Fig. 17(b)]. The combined effect of the two asymmetric factors leads to a gradient distribution of azimuthal displacement along the contact line, which causes a general motion of the actuator towards the SW and a simultaneous turning of the microplate. The same effect has also been discussed in a fiber–nanowire system in Ref. [36], which manifests in the self-parallel parking of the nanowire. As suggested in Fig. 17(c), remarkably, once the nonuniformity in the absorption profile is erased (lower panel), the in-plane locomotion no longer stands, as the excited longitudinal waves along the contact line oscillate in the same magnitude.
Figure 17.Other motion patterns observed on the fiber–plate system. (a) Sequential optical images showing the in-plane rotation of a gold microplate on a microfiber with continuous light pulse injection. The base plane of the gold plate coincides with the
A novel scheme of back-and-forth locomotion of gold plates on a tapered optical fiber probe was reported in 2017 [Fig. 17(d)][247]. As sketched in Fig. 17(e), the initial explanation of this observation is the synergetic action of the optical force and the photophoretic force, with the former pointing along the light propagation, and the latter directed against it. Hence, once the microplate is close to the end of the fiber probe, it experiences stronger photophoretic force, given that the evanescent-wave-induced photothermal effects are highly enhanced at the tip region, and so is the temperature gradient on the gold plate; when the microplate is pulled far away from the tapered fiber end, the optical force becomes dominate and pushes it back to complete the oscillation cycle. Despite the alluring dynamics depicted in this explanation, the calculated optical force and photophoretic force are both at
Besides metallic materials, pulsed light driven actuation has been tested on 2D topological insulators, a group of materials hosting unique optical and electronic properties, given special attention due to the existence of topologically protected boundary states[38]. Figure 17(f) shows the spiral motion of an
4.1.3 Substrate-supported elastic waves for particle detachment
Particles adsorbed on substrates are anchored by van der Waals adhesion and are motionless in the presence of
Figure 18.Particle propulsion via light illumination. (a) Illustration of the nanoprinting process where particles are released from the flexible donor substrate and transported to the receiver plate. Insets are SEM images of particles deposited on the receiver plate. (b) Simulated temperature profile and the thermal expansion of the PDMS layer via plasmonic absorption of a gold particle. An escaping force from the van der Waal’s adhesion is provided by the thermal expansion of the PDMS layer on the donor substrate. Scale bar: 500 nm. (c) Laser modification of the gold nanoprisms deposited on nonwettable substrate. The laser fluence increases from top to bottom in the left panel and from left bottom to right top in the right panel. Beyond a certain threshold, the deposited particles would be propelled from the substrate. (d) Schematic of the laser-induced forward transfer of nanopatterned particles from a donor to a receiver substrate. (e) Dark field microscopic image of arrays of transferred particles on the receiver substrate. The adopted laser beam has a square profile. (f) SEM image showing the sub-features contained in a single square pixel shown in (e). The initial patterned geometry on the donor substrate was obtained via nanosphere lithography, which explains the hexagonal alignment of particles transferred on the receiver substrate. (g) SEM images showing the propulsion of deposited gold materials with minor ablation upon femtosecond light illumination. The laser pulse intensity is
4.1.4 Transient light–thermal effects for ablative propulsion
Nanopatterned particles are most often fabricated through lithography and thin-film deposition on solid substrates. In general, the binding between the deposited material and the substrate goes beyond the van der Waals regime and involves stronger physical and chemical interactions, given that the deposited material “grows” on and binds with the top atomic layer of the substrate instead of being adsorbed as separable individuals. Therefore, the manipulation, or detachment, of such particles has to rely on correspondingly more intensive processes such as dewetting, phase transition, and plasma formation, which can be generally categorized as “laser ablation,” and renders the description of “noninvasive,” which is frequently associated with optical manipulation unapplicable in these schemes.
In 2005, Habenicht et al. experimentally demonstrated that nanofabricated gold structures were propelled from the substrate at a speed of
Complex and hierarchical patterns can be created using LIFT by additionally scanning the light source or the donor substrate in horizonal directions. As displayed in Fig. 18(e), the ejected material can be imprinted on the receiver in a pixel-by-pixel manner, and the acquirement of user-defined geometries is through controlling parameters including scanning trajectory, the shape of the laser spot, and the timing to fire the light shots[257]. Moreover, the structural hierarchy manifests in that each pixel can host sub-features when the light spot encircles multiple nanopatterned particles on the donor substrate [Fig. 18(f)]. Using plain metallic thin films as the donor layer, more systematic researches have revealed that complementary processes take place in LIFT: the etching in the donor substrate, which removes the local material in heat-affected regions; and the deposition in the receiver, which appends extra material to areas lying in the path of the ablative propulsion. Hence, LIFT leaves complementary traces in the donor and receiver substrates, both of which, if optically well designed, can be employed as plasmonic devices[256], metal in-diffused waveguides[260], diffractive elements (e.g., holographic plates), or photomasks with opposite tones[258]. Considering that the key process of material transfer does not pose special limitations with respect to the substrate geometry, using LIFT, non-planar and high-curvature structures such as optical fibers can be patterned with sub-micrometer metallic features to form gratings for sensing and filtering applications[258].
Despite researchers’ efforts in improving the diversity and versatility of LIFT, there is still a lack of comprehension of the fundamental mechanism behind the ablative propulsion. Indeed, besides obtaining momentum from the center of mass elevation during fast dewetting, the nanopatterned particles can be propelled by the explosive pressure that builds up at the particle–substrate interface upon impulsive ablation, and the latter explanation has been more often adopted in situations involving femtosecond lasers[256,260]. Another interpretation is to draw an analogy between LIFT and pulsed laser deposition, a standard physical vapor deposition technique in which high-energy laser pulses are involved and the ejected species are in the form of plasma plumes[261,262]. Interestingly, when both the pulse width and pulse energy are at appropriate levels, the transient light–thermal effects can give rise to stand-up, jump, flip, and even rotation of patterned geometries in more intact forms with minor ablation [Fig. 18(g)][263,264]. Ultrafast dynamics should be taken into account in corresponding results. It is likely that the ordinary channels of nonradiative relaxation leading to phonon excitations were blocked, and what occurred instead were more impulsive and localized phenomena such as ionization and material sublimation[265,266]. Both the compressed heat generation and limited time for heat transfer (meaning small heat-affected regions) might have maintained the integrity of the large proportion of propelled particles.
4.2 Photothermal-Deformation-Based Actuation
Direct conversion of various environmental stimuli into mechanical work provides opportunities for designing actuators. Photothermal actuation, which links the light signal to material deformation via light-to-heat conversion, emerges as an appealing approach since it usually possesses the properties of simple design, controllable reconfiguration, and the capability of realizing multi-degree-of-freedom locomotion in solid-state machineries. Indeed, thermal-deformation-based actuation has been widely exploited in micro–electro–mechanical systems (MEMS), where heat responsive materials are configured into the moving parts of the machinery to be driven by electrical resistive heating[267,268]. Following the same principle, the electric part in the heat-mediated MEMS can readily be substituted by light components so as to construct the micro–opto–mechanical system (MOMS) counterparts[269]. A variety of photothermal effects can be exploited in MOMS devices or even to actuate objects at macroscale, such as light-induced volume expansion, molecule desorption, and material phase transition, which are not restrained to certain working environments and are widely applied in solid domains[270].
The basic mechanism for photothermal actuation is based on a two-step process, which successively includes light-to-heat and heat-to-work conversion. To begin with, light carrying electromagnetic energy should be directed to illuminate the target machinery, whose key components are photothermal materials (e.g., carbon-based materials, plasmonic structures). Upon light–matter interaction, the photoexcited electrons are relaxed via electron–phonon or electron–electron scatterings, which, from the perspective of quantum statistics, leads to heat generation. Next, expectedly, the photothermal materials undergo various changes in their shape, phase composition, surface energy, etc., stimulated by the temperature increase. Note that to build moving parts in the actuator, apart from stimulating the above changes in the materials’ physical properties, external constraints or machinery connections should be implemented in certain configurations (the commonly seen example is the two-layer cantilever with the interface forced to extend to the same level) before the deformation or mechanical work can be manifested and collected. In the following content, three photothermal effects are discussed together with their applications in enabling optical manipulation in solid environments.
4.2.1 Photothermal-induced expansion
Thermal expansion is a common phenomenon where materials change their shape and volume with the increase of temperature, which is quantified by the (linear) coefficient of thermal expansion (CTE) as the relative elongation per unit temperature increases:
According to this basic principle, Javey and co-workers constructed hybrid films composed of polycarbonate (PC) and single-walled carbon nanotube (SWNT) layers[271]. The intrinsic light absorbance of the SWNT can convert visible to near-infrared light into thermal energy, while the PC membrane, though basically transparent, is responsible for providing the large CTE contrast relative to the absorptive SWNT layer. When heated, both constituent layers undergo thermal expansion but with considerably different magnitudes, given that the CTE of PC (65 p.p.m./Kelvin) is dozens of times larger than that of SWNT (
Figure 19.Photothermal deformation-based manipulation. (a) Curling of the SWNT-PC dual-layer structure induced by the CTE mismatch upon light–thermal effects. (b) Schematic showing selective activation of the elementary building block of the artificial muscle. The initial GO-PMMA bilayer structure can be laser-modified into rGO-PMMA (indicated by the shaded areas) to form “joints” of the artificial muscle. Au nanorods are embedded in the bilayer matrix to enhance the light–thermal effects, which would also exhibit wavelength selectivity. (c) Sketch of the
Based on this dual-layer configuration, grippers, smart curtains, rollers, and other machineries can be obtained, whose locomotion relies on the bending of elementary building blocks, i.e., cantilever plates, and can be modulated by the direction of illumination, incident wavelength, and the on–off states of the light source[272–277]. An example of a light-manipulated arm is displayed in Fig. 19(f). The integrated movement is maneuvered by the photothermal effects, and can be decomposed into twisting/untwisting of the helix structure, which functions as the limb, and the folding/unfolding of the stripes attached to the helix, which function collectively as the claw[275]. Both the limb and claw were pre-shaped so that they could perform complex tasks in a way that the cantilever-like deformation should be superimposed on the prescribed configuration in each volume domain, which is a general methodology to obtain multi-degree-of-freedom locomotion beyond bending/unbending.
Inspired by the resemblance between the bending/relaxation of dual-layer structures and the contraction/expansion of muscles, Sun et al. developed monolithic artificial muscles, though free of component assembly, that can reproduce complex locomotion patterns of human limbs or the jointed legs of arthropods[272]. The elementary building block of the artificial muscle is displayed in Fig. 19(b). In their work, the bilayer structure is constituted by a layer of polymethyl methacrylate (PMMA), which features large positive CTE, and gold nanorod-embedded graphene oxide (GO) that is cast upon it, providing both light absorption (enhanced by the plasmonic effects of gold nanorods) and the necessary CTE contrast (the CTE of GO is either small or negative) to the PMMA. Through one-step laser scribing, the bilayer structure is patterned in a way that GO in the illuminated area can be transformed to reduced GO (rGO), which, compared to unmodified GO regions, possesses significantly increased light-to-heat conversion efficiency. Therefore, an rGO pattern laid in between GO regions could effectively function as the “joints” or “nodes” that coordinate the connected “muscle pieces” via light manipulation, which lays the foundation for building assembly-free and light-addressable robots, as illustrated in Fig. 19(e).
4.2.2 Photothermal-induced phase transition
Materials undergo phase transitions with their structures reconfigured at molecular or crystalline levels, which, when accumulated in bulk objects, can induce considerable deformation. The most ubiquitous approach to trigger phase transition is via temperature change, and this is where photothermal effects come in handy. Unlike the thermal-expansion-based scheme in which object deformation is proportional to temperature change, only a small temperature window is demanded to obtain large deformations through phase transition, since it occurs more abruptly, temperature wise[273]. Three schemes of photothermal-induced phase transition are introduced below, each represented by a group of specialized materials.
Shape memory material (SMM) can simultaneously transition from its pre-deformed state to a permanent and “memorized” shape, when heated to beyond the transition temperature
Liquid crystals (LCs) are known for exhibiting phase transitions with external stimuli, among the multiple variations of which the thermotropic type mainly answers to the stimulus of temperature change. The nematic–isotropic phase transition of thermotropic LCs involves mesogenic units rearranged from highly oriented along the long axis to randomly distributed, accompanied by a contraction in the original long axis direction and an expansion perpendicular to it[276]. When adopted to realize light actuation with the assistance from photothermal agents, LCs might be superior to SMPs since reversible deformation of LCs comes along naturally with repetitive heating–cooling cycles, while extra strain or stress should be applied to preset the SMPs in the temporary state, which renders the “reversibility” in the latter case not as easily attainable. To harness the deformation of thermotropic LCs, methods such as a double-layer configuration or patterning of the illuminated regions should be employed[286,287]. As illustrated in Fig. 19(g), worm-like crawling movements can be obtained by scanning the laser spot back and forth along the dual-layer stripe that consists of an LC layer and a passive layer[276]. Given that the orientation of nematic LCs can be adjusted by polarized light, even LC films can be pre-patterned with customer-defined alignments (e.g., azimuthal, radial) using photomasks, which adds to the degree of freedom in optical manipulation since the films would deform correspondingly to the encoded pattern via phase transition[288]. Moreover, the extensively researched trans-cis isomerization in azobenzene-functionalized LCs can also be employed in building light-addressable soft robots, which are driven by the photochemical instead of photothermal process. Interested readers could refer to Refs. [289] and [290].
The crystalline structure transition of the inorganic compound vanadium dioxide (
4.2.3 Photothermal-induced moisture response
A volumetric change can be induced via adsorption/desorption of water molecules, during which the material matrix will swell or shrink accordingly[270]. This phenomenon is especially profound in hydrophilic materials, and the dynamic moisture response can be controlled by either environmental humidity or photothermal effects[292,293].
An exemplary demonstration has been made by Mu et al., where a quasi-dual-layer structure is adopted, composed of a layer of rGO, which is hydrophobic, and the other layer of polydopamine (PDA) decorated GO, which is hydrophilic[274]. The photothermal capability of both rGO and GO-PDA ensures heat generation when subject to light illumination in a broad wavelength range. Consequently, following the on and off states of the light source, dynamic heating and cooling cycles set upon the matrix would cause the GO-PDA layer to desorb or adsorb water molecules, while the rGO layer, owing to its hydrophobicity, would be largely unaffected by light irradiation. Thereupon, as suggested by Fig. 19(d), the photothermally driven volume change of the GO-PDA is in stark contrast to the rGO whose volume exhibits little variance, which gives rise to the bending of the dual-layer film with the largest bending angle reaching 180°. On top of the dual-layer structure, by inflicting an additional component gradient in the lateral plane (with the assistance of reductant filtration masks), the as-patterned all-graphene papers can perform origami-like self-assembly or even be controlled to walk or swerve by light[274]. Similar actuation schemes have been reported using different water-sensitive and -inert layers, or to enhance the actuating efficiency, using two active layers that respond oppositely to the trigger signals, which all stick to the most classic dual-layer structure as the elementary building blocks[293–295]. Reversible twisting and rotational motions can also be realized through a photothermally-induced moisture response[296]. In brief, the GO-saturated matrix should be pre-molded into a twisted fiber. In response to modulated light signals, the fiber will experience an assisting torque and be overtwisted when the light is “on”/upon water desorption, and receive a counter torque that unwinds it to the original state when the light is “off”/upon water re-adsorption. Following the same mechanism, omnidirectional oscillation and a self-sustained swimmer can be achieved through the alternative shrinkage (water expulsion) and reswelling (water re-adsorption) of hydrogel components immersed in water baths. Instead of relying on input switches between on–off states of light, a constant photothermal stimulus was used, and the self-sustained oscillation was mediated by the built-in negative feedback loop of self-shadowing in each oscillation period[297]. To date, this scheme of optical manipulation has mainly centered on large-scale objects, and correspondingly, the response time is usually unsatisfactory, considering the time for heat transfer at long dimensions and the intrinsically retarded desorption/adsorption dynamics following the Arrhenius theory. However, it provides an intriguing alternative to realize macroscale optical manipulation with moisture-gated capability, and has demonstrated a unique mechanism for materials to “shrink” upon temperature increase (see Sec. 4.2.1).
4.3 Tailoring Interactions with Environments
In solid states, the pronounced adhesive force hampers the motion of subjects, since they essentially remain rigid bodies and are anchored either by the van der Waals interaction or chemical bonds. The deficiency of fluidity renders the diffusion-based processes that work well in liquid domains highly ineffective in solid environments, where the mass transfer flux is negligible. By inflicting fluidity on either the substrates or the supported cargoes, as discussed in the following two sections, the obstacles of adhesive forces can be bypassed with the exertion of
4.3.1 Inflicting fluidity on substrates
For solid–solid interactions, van der Waals force would gradually become dominant when downscaling towards the micro and nano regimes, which dwarfs the light force and even the photophoretic force by several orders of magnitude[37]. Under this circumstance, Li et al. have proposed an approach that bypasses the direct confrontation with the
Figure 20.Tailoring interactions with environments. (a) Schematic of the in-plane photon nudging in the “on” state of the optothermal gate. (b) Rotation, translation, and versatile particle assembly achieved by the optothermally gated photon nudging. Scale bar: 3 µm. (c) Generation and transportation of germanium particles within a laser-liquidized region of a silica fiber. (d) Construction of in-fiber p-n homojunctions in a dual-core fiber. The originally separated p and n type particles are both drawn to the laser spot and become contacted. (e) Schematic illustrating the self-assembly of liquid filament upon nanosecond laser illumination with prescribed periodic perturbation. The light-powered dewetting process leads to the breakup of liquid filaments into periodically arranged hierarchical nanoparticles. In comparison, without preassigned perturbations, the multimode Rayleigh–Plateau instability would result in randomly distributed particles (left top inset). (f) Time evolution of the filament geometry with the prescribed perturbation. The fine lines connecting neighboring first-order particles would dewet into second-order particles shown in (e). (a), (b) Adapted from Ref. [
The phase-transition mechanism also applies to light manipulation of substances embedded in solid media. In 2019, Zhang et al. realized in-fiber particle manipulation through a solid-to-liquid phase transition and the Marangoni effect that follows, where particles are precipitated from the fiber core, as a result of Rayleigh–Plateau instability empowered by light–thermal effects[301]. Displayed in Fig. 20(c) is the schematic showing the formation and directed migration of germanium particles induced by high-power CW laser irradiation. First, the fiber in the illuminated region is fluidized due to photothermal effects of silica materials at infrared wavelengths. Then, the resultant temperature field induces thermocapillary/Marangoni convections in the unevenly heated fiber matrix, which transports the embedded particles to the laser spot, and thus the whole in-fiber delivery scheme is dependent only on the fluidic field and can be generalized for particles with various sizes, shapes, and materials. To demonstrate this versatility, the authors successfully fabricated p-n homo- and hetero-junctions out of dual-core silica fibers [Fig. 20(d)]. Despite the differences in thermocapillary properties and the location mismatches between particles precipitated from each core, they can be brought together in pairs by the well-directed Marangoni flow towards the laser spot [see insets in Fig. 20(d)]. Indeed, compared to CW lights, ultrafast lasers are more often adopted to initiate phase transitions and direct mass flows during the impulsive liquid time, which is followed by the quenching process at pulse intervals. An additional advantage associated with pulsed lights, especially femtosecond light sources, lies in the smallness of the heat affected zone, which justifies direct laser writing of chemically or physically modified structures with unprecedented resolution[302,303]. For those situations that entail light-induced mass transfer, they should be inspected at molecular or even atomic scales. Recently, Sun et al. have demonstrated such a scheme where ultrafast laser pulses were used to reorganize the chemical compositions in halide-doped borophosphate glasses; the migration of halide ions powered by local temperature and pressure surges has enabled the direct lithography of perovskite nanocrystals with bandgaps tunable by laser parameters[304].
4.3.2 Inflicting fluidity on deposited materials
Deposited materials, usually in the form of thin films, interact with underlying substrates via physical and chemical bonds. In Sec. 4.1.4, we introduced the detachment of deposited materials powered by ultrafast laser pulses, the motion of which should be categorized as in the out-of-plane direction. Indeed, in-plane modulation of the deposited materials is also possible by first increasing the mobility of the materials and then leveraging interfacially directed stresses.
Metallic thin-film dewetting is such an example, which works at an elevated temperature in both solid and liquid states with relaxed limitations upon atomic diffusions[305]. Before the launch of light illumination (or other heat sources), the metallic films are forced to be in cylindrical forms at nonequilibrium states, given that they intrinsically could not wet the substrates. Once the light-induced heat is generated within the absorptive films, the dewetting process sets in, during which the sharp-cornered edges retreat and are replaced by more obtuse ones. The driving force for this scheme of mass transfer is the minimization of surface energies and restoration of the equilibrium state that carries the feature of nonwetting interfaces (which favors deposited material in the form of droplets rather than thin films). Given sufficient time, the resultant in-plane mass transfer and modulations of the geometry can be substantial while being random, owing to the Rayleigh–Plateau instabilities of stripe-like fluids[305,306]; whereas by presetting regular perturbations, the multimode evolution of the instability leading to the breakup of the fluidic stripes could be compressed with only one single mode prevailing, as shown in Fig. 20(e)[307]. The temporal development of the surface geometry is further visualized in Fig. 20(f), where the prescribed perturbation patterns become increasingly manifested by the on-going mass transfer at the liquidizing stage, enabled by continuous injection of laser pulses[307,308]. Capillary forces that exist on interfaces between different phases can also be exploited in the general picture of optical manipulation, the prerequisite of which is still the fluidization of the deposited substances. Taking the thermal capillary force (also called the Marangoni effect) for instance, by creating specific temperature profiles using either focused light (concentrated hot spot) or light field interference (periodic temperature distribution), the liquid–gas interfacial tension can be tuned according to the relation
5 Applications of Optical Manipulation
After half a century’s development, optical manipulation has been applied to myriad scenarios. In Sec. 5, we introduce several representative applications of optical manipulation to provide some insight into where and how this technology can be of practical use and which disciplines can benefit from it.
5.1 Optical Tools for Analyzing Biochemical Molecules and Cells
Ever since the concept of the optical tweezer was first put forward, researchers have been pondering over its application in the field of biochemistry and cellular biology, where single molecules or bioactive cells can be studied in situ while being optically trapped. In 1987, one year after the invention of single-beam optical tweezers, Ashkin switched from dielectric particles to the motile Escherichia coli bacteria as the targets to be captured by the focused laser beam, which marked the destined encounter between light manipulation and biological investigations at micro-nano scale[312]. A straightforward use of optical traps in biological assays is mainly to single out and immobilize individual samples against the Brownian drift in liquid environments, which allows the precise in vitro or in vivo detection of single molecular signals not smeared out by the bulk average[66,158,313–315]. With continuous advances in this field, more delicate functionalities have been incorporated into optical tweezers, enabling versatile manipulation of captured molecules and simultaneous performance of force spectroscopies and fluorescent measurements, etc.
Complex molecular activities of biological samples (e.g., protein folding and unfolding, DNA supercoiling and unzipping) involve non-rigid body movements, the study of which typically requires that the sample molecule be tethered to dielectric particles through handlers, as shown in Fig. 21(a). Therefore, controlling the sample motion can be translated into applying either the linear force or the torque to the handlers held in the optical tweezers, and the techniques are basically the same as those in Sec. 3. For instance, in the dual-beam scheme displayed in Fig. 21(a), a DNA molecule can be stretched by moving apart the two optical tweezers, which strains the handlers, during which both the level of extension and the linear force (restoring force in the optical tweezer) are recorded in a calibrated system. Or alternatively, the structural evolution of the sample molecule could be studied in a force clamp, where the pulling force is kept constant while allowing extension fluctuations[316]. The latter arrangement was adopted by Abbondanzieri et al., who have successfully detected the stepwise translocation behavior of RNA polymerase during transcription [see Figs. 21(a) and 21(b)], and more importantly, found that the stepping increment corresponds to the dimension of a single base pair of
Figure 21.Optical tools for analyzing biochemical molecules and cells. (a) Schematic of a dumbbell geometry formed by a DNA molecule tethered to dielectric particles held in two separate optical tweezers. While the stiffer trap (left) is responsible for stretching the DNA molecule by steering away (via acousto-optic deflector) from the optical trap on the right, the weak trap establishes a force clamp where the particle is held at a zero-stiffness zone offset from the trap center. (b) Recorded temporal evolution of the DNA extension exhibiting step-wise behaviors. The experiment is conducted in a constant-force modality with 18 pN assisting load. The system noise is controlled below 1 Å for high spatial resolution. (c) Schematic of an angular optical tweezer for controlling and measuring the torque in the transcription process against the upstream supercoiling (–) and downstream supercoiling (+). The quartz cylinder is aligned with its extraordinary axis parallel to the transverse plane, so that an alignment torque is exerted on it in the linearly polarized light field. (d) Torque-extension relation in a transient pulsed form. The tested RNA polymerase would receive a pulsed resisting torque while transcribing. When the resisting torque is too large or lasts sufficiently long (pulse duration 5 s versus 0.5 s), the transcription would be deactivated, which is manifested in the extension traces. (e) Experimental setup of a plasmonic nanopore designed for optically trapping and sequencing DNA molecules. The strongly enhanced near fields at the tips of bowtie antennas provide both the anchoring sites for the molecule and the excitation signals for Raman spectroscopy of the exposed nucleotide. Consecutive on and off states of incident light enable the stepwise translocation of the DNA molecule under the electric bias across the nanopore. (f) Illustration of a “fleezer” system in a confocal configuration. The trapping beams and the excitation beam are spatially separated, with the former capturing the particle handlers and the latter focusing on the fluorescently labeled samples. (g) Signals recorded in both the optical tweezer and the fluorescence channels. The jumps shown in the upper panel correspond to the opening of the mRNA hairpin by one-codon steps. The spikes in the lower panel indicate the binding of fluorescently labeled EF-G. (a), (b) Adapted from Ref. [
Combining optical spectroscopy with optical tweezers is a natural thought, since their experimental setups are mutually compatible (including the light source, signal detection element, sampling stage, etc.)[322,323]. In 2015, Belkin et al. demonstrated a hybridized platform that enables trapping, displacing, and optically characterizing DNA molecules in plasmonic nanopores, as illustrated in Fig. 21(e)[324]. While the “on” state of light anchors the DNA towards the plasmonic hot spots, surface-enhanced Raman signals as the fingerprints of nucleotides could be excited by the same incident trapping light and be collected by a detector. The “off” state, in contrast, would release the DNA and allow it to translocate through the nanopore driven by the transmembrane electric bias. Hence, periodic modulation of the plasmonic field would result in stepwise displacement of the DNA molecule with the currently exposed nucleotide being excited for Raman spectroscopy, and the sequence of the DNA can be determined after the whole molecule passes through the nanopore. Alternatively, the trapping beam, which typically requires high-power fluence for particle immobilization, can be separated from the excitation beam so that the wavelength of the trapping light can be selected outside the absorption band of the sample molecule to avoid undesired thermal damage. Moreover, co-force-and-fluorescence measurements are possible in a “fleezer” system (optical tweezer with fluorescence capability), which allows the mechanical and material properties to be probed simultaneously and complementarily[73]. Figure 21(f) shows such an example, where an mRNA hairpin is tethered to polystyrene beads held in two optical traps with a ribosome attached to its end[325]. To uncover the catalytic dynamics of the translocation factor EF-G, they were fluorescently labeled so that their arrival at or release from the target site would generate spikes on the fluorescence channel, which, by comparing with extension steps (corresponding to unwinding of mRNA by one codon) captured in the optical tweezer channel, provides insightful information over how the EF-G binding synchronizes the translation process [Fig. 21(g)].
5.2 Investigation and Test of Fundamental Physics with Optical Tweezers
5.2.1 Brownian particle velocity measurement
One of the major characteristics of Brownian motion is randomness, which originates from particles colliding with the surrounding fluid[326]. In 1905, Albert Einstein proposed that though being random, the Brownian movement of particles follows a diffusive pattern such that the mean squared displacement (MSD) of free particles scales proportionally with time[327]:
Under these conditions, the velocity data can be acquired from the measured particle displacement, whose distribution coincides with Maxwell–Boltzmann distribution and thus verifies the energy equipartition theorem[98].
Deviation of the Brownian motion from the diffusive behavior was also reported below a millisecond time scale. As suggested by the Langevin equation
Figure 22.Measurement of the instantaneous velocity of Brownian particles in an optical tweezer platform. (a) Measured MSD (symbols) of a trapped particle compared to Einstein’s deduction (dashed lines) and the prediction of the Langevin equation (solid lines) at different air pressures. (b) MSD of a Brownian particle at short time scales (
5.2.2 Gravitational wave detection
As a classical phenomenon of general relativity, gravitational waves are described as disturbances in the curvature of spacetime, which are generated by accelerating masses through gravitational radiation[331]. When a gravitational wave passes through objects, the local curvature of spacetime is modulated, causing the relative positions and distances between objects to change at a speed corresponding to the frequency of the incoming gravitational wave. Precise detection of gravitational waves is invaluable in cosmology and astronomy, since they carry information of the early universe and the unexplored deep space that is otherwise untraceable by conventional techniques (e.g., space telescopes). However, given the astronomical distance, gravitational waves that reach the Earth are significantly attenuated, with the resultant strain of spacetime being less than
Despite the success of LIGO, a cavity-based optical tweezer also comes as an ideal candidate for gravitational wave detection. In 2013, Arvanitaki et al. proposed an experimental setup, where a nanoparticle could be optically levitated and trapped at the antinode of a cavity and serve as a force sensor[333]. Upon impingement of gravitational waves, fluctuant displacements of the cavity mirrors and the trapped particle are to be expected, which result in minor deviation of the particle from its trap minimum. In this way, the effect of gravitational waves is equivalent to introduction of an additional oscillatory driving force, whose amplitude and frequency would be reflected in the phase of the detection light via optomechanical coupling.
Ultrahigh sensitivity of the proposed detector relies on several factors. First, to reduce noise, the thermal contact of the particle to the environment is minimized through implementation of optical levitation and high vacuum. Under this working condition, the trapped particle as an oscillator (with optical trapping force as the restoring force) could possess a mechanical Q factor up to
A cavity-based optical tweezer is a compact device compared to LIGO (
5.3 Particle Assembly and Nanoprinting
In Secs. 3 and 4, we introduced basic optical manipulation techniques in both fluidic and solid environments. A straightforward application scenario for those techniques is to dynamically assemble particles into customized configurations, which entails trapping and transportation of particles and finally anchoring them at predefined sites to form patterns.
In fluidic domains, particles tend to drift as a result of stochastic effects. Hence, the final step, that is to say, the particle anchoring, requires either permanent trapping in fluidic suspensions or the assistance of substrates via adhesive force. In both cases, SLMs are frequently employed to imprint time-varying holograms to establish arrays of trapping sites, where particles can be dragged to move along with the updated light profiles or immobilized in customized assembly [see Figs. 7(e) and 12(c)][93,167]. The use of SLMs is compatible with multiple mechanisms of optical manipulation, including the basic light–matter momentum transfer, thermophoretic effects, and the opto-thermoelectric hybridized scheme (see Sec. 3), which all rely on the temporal–spatial modulation of the light field. Indeed, the “trapping” and “transportation” operations need not necessarily be separated. Instead, they can be integrated into one single step, where the particles are laterally localized while being subject to longitudinal propulsion as “missiles” guided by light propagation [see Figs. 11(b) and 18(a)][92,249]. The 2D trapping modality ensures pinpoint positioning, in that the launched particles do not diffuse out of the diffraction-limited light spot, and the propulsion (via the light scattering force, photophoretic force, or the opto-thermoelectric field) is usually responsible for transferring the particles onto adhesive platforms for permanent anchoring, which spares the need of persistent input of light for particle immobilization in fluidic environments.
In solid domains, the “anchoring” step is unrequired. What turns out to be the most formidable challenge is instead to overcome the inclination of being anchored, so that the particles can be released and transported at will. This problem can be bypassed by introducing a solid-to-liquid phase transition to the contact layer of the substrate, as previously demonstrated in Fig. 20(a). The temporarily induced phase transition by light–thermal effects effectively creates a fluidic environment, which lowers the threshold for the in-plane driving force to the same level as optical force and allows the substrate to reversely transition back to the adhesive state[298]. Alternatively, out-of-plane ejection of particles, through either intensive thermal expansion of flexible substrates [Fig. 18(b)][249] or excitation of surface elastic waves[28], provides promising scenarios to launch particles, and subsequent to their detachment from the substrates, the light gradient force could implement control over the transportation trajectory and ensure the spatial accuracy. The remote and contact-free technique for nanoprinting can be realized thereafter, where particles can be launched from one substrate and pinpointedly deposited on the other with sub-100 nm accuracy. Notably, a plethora of researches have demonstrated controllable deposition of particles on solid domains via surface elastic waves. Nevertheless, they are not within the scope of this review, since the stimulus is most often a.c. signals applied upon piezoelectric materials[339–341]. More efforts should be made to uncover the relation between light pulses and acoustic mode profiles before opto-thermoelastic force can be utilized in versatile particle assembly and nanoprinting.
5.4 Photophoretic Trapping for Volumetric Display
The aberrated focal volume of bottle beams contains alternating dark and bright regions, which can be exploited to build photophoretic traps for absorptive aerosol particles [see Sec. 3.1.5 and Fig. 11(d)]. Combined with RGB illumination and utilizing the fast laser beam scanning technique, the aberration-based photophoretic trap can be readily converted to a 3D volumetric display, as exhibited in Fig. 23(a)[342]. Once a particle (
Figure 23.Photophoretic trapping for volumetric display. (a) Schematic illustration of the photophoretic trap display. Individual absorptive particles can be levitated in the dark region of a bottle beam (trapping beam) and scanned to form images at a speed beyond what is required by the persistence of vision. RBG lasers are collinearly aligned with the trapping beam to illuminate the trapped particle. (b), (c) Three-dimensional images exemplifying the capability of the proposed volumetric display. (b) The as-produced images can be received from arbitrary angles free of clipping. (c) “Wrap around” images can be created surrounding a 3D-printed arm model, whose imaging effect is not affected by the obstruction of real physical objects as what would appear in conventional holograms. Adapted from Ref. [
5.5 Opto-Thermo-Mechanics with Pulsed Laser
In Sec. 4.1.2, the capability of nanosecond pulsed light was unfolded in great detail in coupling to the surface acoustic modes of thin absorptive materials. One important feature of the resultant actuation is the pulse-wise locomotion in either longitudinal or azimuthal direction, and the spatial resolution of each single step could reach sub-nanometer scale[35,37]. Based on these observations, ultrahigh precision machineries can be built on the already-explored fiber–plate or fiber–nanowire systems, where plasmonic structures with micrometer footprints are chosen to be actuators that locomote relative to silica fibers as both the light waveguide and the mechanical stator[35–37,343]. By controlling the initial actuator–stator configurations (to filter certain motional degrees of freedoms) and the number of pulses, the translational direction, distance (translational motion is driven by longitudinal asymmetry of the impulsive thermal expansion[37]), rotation angle (the rotational motion is driven by the asymmetry in the two wings of the gold plate segmented by the contact line[35]), and the stabilized pose of the actuator (influenced by both the wing asymmetry and the gradient thermal expansion along the contact line[5]) can all be well adjusted with accumulative contributions from individual pulses at sub-nanometer accuracy. Nevertheless, to date, this technique is still at the development stage, and only a few application scenarios have been put forward that fit the currently certified fiber–plate/nanowire systems. Figures 24(a)–24(c) display a possible application proposed by Lu et al., where the rotating gold plate serves as a micromirror for laser scanning[35]. Since the signal was collected in the far field, the advantage of high-precision mechanics was not quite substantialized.
Figure 24.(a) Schematic of the fiber–plate system used for laser scanning. The gold plate as the rotor in the machinery exhibits high reflectivity at the incident wavelength, thus functioning as a micromirror that reflects the light beam as it rotates. (b) Sequential optical images showing the laser beam deflected with time. The rotation speed of the micromirror is 0.1 rad/s. (c) Comparison between the experimentally measured and calculated beam deflection with time. The stepwise feature can be clearly seen in the experimental data. (d) Schematic of a fiber-based photonic integrated circuit with plasmonic nanowires functioning as the moving elements. (e) Basic setup of the on-chip realization of opto-thermo-mechanical actuation based on waveguide platforms. (f) Schematic of on-chip multiplexed actuation of plasmonic vehicles. (a)–(c) Adapted from Ref. [
Needless to say, given the particularity and limitations of silica fibers, transferring the opto-thermo-mechanics mechanism from the fiber platform to arbitrary solid substrates, especially to on-chip photonic integrated circuits, is an irresistible trend. Figure 24(d) demonstrates a semi on-chip manipulation of plasmonic micro-vehicles on microfibers, which are fixed on low-index substrates[36]. In principle, this scheme may also be reproduced on silicon-based waveguide platforms [Fig. 24(e)], which are readily compatible with nanofabrication techniques and are of a higher level of integration compared to silica fiber networks. In doing so, not only can this actuation scheme be theoretically generalized, but it would also be endowed with great practical value in building mobile and reconfigurable elements for light modulation [Fig. 24(f)], thus creating a closed loop in the form of light→thermo→mechanics→light. Nevertheless, the challenges would be harder to tackle, considering the adhesive force associated with the significantly increased contact area, the surface roughness induced in device fabrication (note that the surface roughness on a silica fiber is at angstrom scale), and the fiber–waveguide coupling loss[344].
5.6 Pulsed Laser Cleaning
Particulates of sub-micrometer dimensions account for a major source of contaminants in the semiconductor industry, which deteriorates fabrication precision and introduces considerable loss to fabricated devices under working conditions[29,345]. Compared with conventional cleaning techniques (including ultrasonics, solution rinsing, high-pressure jet purge, plasma etching, etc.), pulsed laser cleaning is capable of generating sufficient particle acceleration and features a contact-free operation process, which makes it widely applied in scenarios requiring a high level of cleanness.
When illuminated with a pulsed laser, the substrate absorbs light power and experiences abrupt expansion, resulting in the excitation of surface acoustic waves that detach and propel the adhered particulates. In contrast, a CW light source cannot be used for the same purpose due to the absence of “abruptness”[346]. Upon irradiation of pulsed light, the generated transient acceleration of sub-micro-sized particulates can reach beyond
5.7 Particle Acceleration with Pulsed Laser
Compared to CW light, pulsed light condenses energy within short pulse durations and features high peak power, thereby possessing advantages in reaching threshold conditions for exciting fast and intensive dynamic processes. For instance, upon pulsed light illumination, electrically neutral particles could obtain transient acceleration through laser-induced surface acoustic waves or plasma shockwaves[352,353]. The generated propulsion relies on the interaction between the pulsed laser and target media (fluidic atmosphere, illuminated particles, substrates, etc.), and the threshold condition, which is either to overcome the adhesion force in solid domain or ionize the media via avalanche processes[354,355], requires that the input light energy should be sufficiently condensed in both time and space. Typically, the peak light powers adopted in the two schemes are approximately in the sub-
Accelerating particles to the relativistic regime, which is of great significance in the field of high-energy physics, can also be realized by the use of pulsed lasers. First proposed in 1979, the concept of laser plasma accelerator (LPA) elegantly utilizes the plasma wake generated by the sudden burst of electromagnetic energy, establishing ultrahigh acceleration gradients (
Note that while conventional particle accelerators exploit radio frequency (RF) electric fields in metallic chambers, they inevitably suffer from the metal breakdown threshold, which restrains the acceptable accelerating gradient to
As previously stated, to achieve substantial particle acceleration, extremely high energy should be condensed into ultrashort pulse durations. Due to chirped pulse amplification (CPA) technology, compact fs laser sources with intense power output up to petawatt (
6 Conclusions and Perspectives
Possessing advantages of remote, contact-free operation and high spatial resolution, optical manipulation has gained tremendous attention ever since the initial proposition of optical tweezers. Over the past few decades, optical approaches, especially represented by optical tweezer platforms, have provided powerful tools that satisfy the growing demand for exploration in the micro/nano world, enhancing advances in various disciplines from fundamental physics to real-life technologies[362]. In this review, we have demonstrated a wide range of optical manipulation techniques adopting different mechanisms, specified for various operational scenarios. Humbled by the voluminousness of literature in this field, we have selected a particular perspective rarely reviewed before, which is to compare the implementation of optical manipulation in fluid and solid domains.
In fluidic environments, the main task is to counter the Brownian diffusion of tiny objects and impose regular and programmable motion patterns on them. Considering both the scale of dominant forces and the characteristics of the operational environments, two approaches can be taken: (1) directly exerting optical force/torque upon the target objects by interfacing the momentum channel of light; (2) indirectly coercing the target objects into motion via hydrodynamic effects by interfacing the energy channel of light. To extend the optical manipulation from fluid to solid domains, the major challenge has become the adhesive force, which stifles stochastic behaviors while also overwhelming the optical force/torque. Aside from the pulsed optical force, the scheme of direct momentum transfer from light to matter loses its effectiveness. Resorting to the energy channel instead, the transient light–thermal effects and the associated light-induced acoustic waves or the solid-to-liquid phase transition provide alternatives to overcome or bypass the adhesion forces. Specially, the internal force-driven mechanism, whether in semi-steady state or in the form of acoustic waves, bears great significance in enabling more versatile and multimode manipulations in highly adhesive regimes.
Despite the attempts to recollect as much of the historically important and emerging researches as possible, we could not cover the relevant work to exhaustion. Still, we have seized several directions in this field that we evaluate as burgeoning or bearing the potential of becoming significant in the future, and as complementary to the main text, we summarize them below.
6.1 Optical Manipulation Using Pulsed Light
Ever since the first successful trials of optical tweezers, CW light has been chosen as the light source for optical manipulation, which, despite the neatness in the physics it entails, has excluded myriad interesting effects associated only with pulsed lasers. With temporally compressed energy within an ultrashort time span, pulsed lasers as the optical source could bring about high-peak-valued optical force, nonlinear optical effects, impulsive physical dynamics, etc., extending the capability of optical manipulation to realms hardly accessible via the mere use of CW light.
Pulsed optical force: as discussed in Sec. 4.1.1, pulsed lasers could generate tremendous peak values of optical forces, which could surpass the adhesive force with moderate single-pulse energy and be used to release stuck particles from the solid substrate[241,363]. In addition, the giant magnitude of the transient scattering force can be harnessed for pulse-wise propulsion of suspended particles. In fluidic environments, high-repetition-rate ultrafast lasers could establish stable particle trapping, adopting the same apparatus as CW light optical tweezers.
Nonlinear effects: due to the high peak power of pulsed light, micro/nano particles in ultrafast light fields could easily enter the nonlinear regime[364]. For instance, by incorporating femtosecond lasers into optical tweezer platforms, in situ studying of two-photon photoluminescence or second-harmonic generation is possible, where the ultrafast light source assumes the dual responsibility of both trapping the samples and exciting the fluorescence/high-order harmonics[246,322,365]. In some situations, the nonlinear terms in the polarizability of target objects could induce unconventional phenomena, and the use of femtosecond lasers could change the landscape of the potential well by splitting the initial simplex minimum to multiple equivalent trapping sites[366,367], or induce abnormal ejection of particles in directions relevant to light beam polarization[245,368]. Moreover, at near-resonance conditions, the associated surge in polarizability could remarkably enhance the trapping stability by several folds, which provides a feasible alternative to further improve the spatial resolution of optical tweezers to the deep sub-wavelength or even atomic level[246,369].
Impulsive physical dynamics: pulsed light induces transient light–thermal effects in light-absorptive media, thereby endowing the impulsive feature to other auxiliary physical fields. Nanosecond lasers could effectively couple to heat and acoustic channels, the latter capable of countering the adhesive forces. On the other hand, ultrafast lasers could initiate intensive physical dynamics with minimized heating and cooling windows, localized heat-affected regions, and sometimes non-thermal transient ablation of materials when using lasers with pulse durations shorter than the electron–phonon coupling time, enabling material modification[370], high-precision nano machining[311,371], well-directed mass diffusion[265,304], and elaborate ablation of skin layer atoms due to non-thermal unbonding[265,266], which might be classified as optical manipulation in a broad sense and has been studied extensively in solid systems.
6.2 Optical Manipulation via Multiphysics Coupling
Optical manipulation relies on harnessing either the momentum or the energy of light. Considering that photons are adequate energy carriers but poor momentum carriers, as determined by the dispersion relation (large speed of light), interfacing the energy channel of light is promising in inducing derivative forces that are several orders of magnitude larger than the optical force, in which multiphysics coupling is indispensable. Typically, auxiliary physical fields such as the flow field in the fluidic domain or the acoustic field in the solid domain are byproducts of light illumination mediated through light–thermal effects, i.e., the heat field. Alternatively, physical fields such as the electric field could be pre-assigned in the operational environment, which brings about dielectrophoresis in nonuniform electric fields (induced by light patterning of photoconductive layers), frequently exploited as an electrokinetic manipulation method in optoelectronic tweezers or machineries[176], or when coexisting with the heat field, generates directed mass flow of the fluid (e.g., ETP flow[25]) and ultimately induces the motion of suspended particles. Examples such as thermophoretic force, opto-thermoelectric force, and opto-thermoelastic deformation effects are all synergetic results of multiple physical fields, possessing merits of large magnitude (compared to optical force), long working distances, free choice of actuating particles, or capability of inducing solid-domain locomotion, not shared by the light momentum-based optical force. For the purpose of enriching optical manipulation techniques as well as the achievable actuation modes, more complex and exotic cross-disciplinary schemes should be considered, such as electron acceleration by laser plasma wakefields (Sec. 5.7), particle ejection via laser-induced shockwaves[349,372], aquatic robotics powered by bubble expansion and photoacoustic streaming[3,373–376], migration of fluidic species due to light-electro-osmosis[175] or light-induced Marangoni flow[377], cell concentration based on the synergism between the optical generation and acoustic activation of bubbles[378], out-of-plane rotation and combined multimode manipulation of spherically symmetric particles by delicately managing the interplay among multiple physics-induced forces and torques[379,380], or the propulsion of graphene sponges through electron emissions[381]. Care should be taken when dealing with such complex situations so as to unmistakably recognize the real dominant mechanism in the multiphysics scenario[382,383].
6.3 Optical Manipulation in Highly Adhesive Environments
Compared to optical manipulation in fluidic environments, in the solid domain, corresponding studies are relatively poor in variety and versatility, and the theoretical framework is far from well established. An urgent need, which also bears great significance, is to acquire a higher level of controllability and realize multi-degree-of-freedom light-induced locomotion in adhesive environments, especially at the microscale. For one thing, free from Brownian diffusions, the assembled patterns of micro/nanoparticles can be self-sustained even after the withdrawal of the light source, enabling versatile micro/nano fabrication with high precision[249,298]. For another, from a more general perspective, the all-optical approach is trending versus the all-electric counterpart, and one promising direction is to construct MOMS as opposed to MEMS, which has progressively matured these years. In effect, the on-chip platforms of MEMS can be readily adapted for MOMS, only that the latter should search for proper driving mechanisms that underpin the solid-domain mechanical locomotion. Among the existing techniques discussed in this review, the photothermal-driven cantilever beam[273] or the origami-inspired structures[384] could be manufactured at microscale and function as the building elements of the desired machineries. Another feasible resolution is to reproduce the electro-acoustic coupling in the light regime. On piezoelectric substrates, the acoustic fields can be patterned by applying a.c. signals to opposing arrays of interdigital transducers, and the electric signal can be adjusted independently on each electrode[339,385]. In contrast, to induce user-desired acoustic fields in the opto-thermoelastic coupling scheme, multiplexed pulsed laser beams should be employed to parallelly illuminate one absorptive substrate (or micrometer-sized actuators), with the laser pulse parameters dynamically tunable. In addition, the substrate or the actuators can be patterned beforehand to support various modes of elastic waves. Still, more efforts are needed to solidify the theoretical framework, i.e., to map the relation between optical fields and the subsequent thermal and acoustic fields before the above practices can be carried out.
6.4 Optical Manipulation on Integrated Platforms
A growing trend of optical manipulation is to improve the integration level of devices, meaning to transfer the experimental setup from bulk free optics to planar platforms with minimized footprints such as metasurfaces and on-chip waveguides, or for in vivo practices, to optical fibers. Instead of refractive optics, these newly developed techniques, when applied to optical-force-based manipulation, are largely reliant on evanescent fields, wavefront shaping, or nanophotonics (e.g., plasmonics or high-Q dielectric nanoresonators) to condense the incident light within diffraction-limited or even sub-wavelength dimensions, thus eliminating the need for high-NA objectives and minimizing the device footprint. Benefiting from modern nanofabrication techniques, these devices are portable, autonomous, integrable, and able to interface with other existing technologies including microfluidics[386] and endoscopes[151,387], which coincides with the general quest towards higher versatility and practicality. On the other hand, for optical manipulation that involves multiphysics coupling, considering that the auxiliary physical fields should be intermediated with photothermal effects, the use of metasurfaces is advantageous since they are associated with huge parameter spaces to optimize the light–thermal conversion efficiency of the substrate. For instance, nearly perfect light absorptance can be achieved upon metamaterial absorbers by delicately engineering the geometry and material compositions along both the thickness and transverse dimensions[130,388–392], which could in principle improve the power efficiency of optical manipulation techniques that require heat generation, e.g., opto-thermoelectric and opto-thermoelectrohydrodynamic tweezers. The solid-domain optical manipulation, though starting late, should follow the same trend in becoming more compact in volume and adapted to concrete application scenarios. Specifically, all-optical modulation could be established on-chip based on the opto-thermoelastic wave actuation mechanism, where microplates or plasmonic nanowires could function as mobile and reconfigurable mechanical elements controlled by the input light pulses supported by evanescent field waveguides[36,37].
All in all, optical manipulation has provided powerful tools for scientific investigations into the micro world. We envision that corresponding researches will continue to gain momentum at intersections of electromagnetism and fundamental physics and biology. In the meanwhile, we should use imaginations and enrich our knowledge base to venture out of the comfort zone, and extend the capability of optical manipulation beyond conventional scenarios.
Acknowledgment
Acknowledgment. This work was supported by the National Natural Science Foundation of China (Nos. 61927820, 61905201, and 62275221). The authors declare no competing financial interest.
References
[1] J. Kepler. Ad vitellionem paralipomena(1968).
[2] J. D. Jackson. Classical Electrodynamics(1999).
[4] J. Chen et al. Optical pulling force. Nat. Photonics, 5, 531(2011).
[6] J. Poynting. XXXIX. Radiation pressure. Lond. Edinb. Dublin Philos. Mag. J. Sci., 9, 393(1905).
[9] R. Feynman. There’s plenty of room at the bottom. Eng. Sci. Mag., 23, 22(1960).
[10] C. Bradac. Nanoscale optical trapping: a review. Adv. Opt. Mater., 6, 1800005(2018).
[11] A. Ashkin. Applications of laser radiation pressure. Science, 210, 1081(1980).
[15] G. Volpe et al. Surface plasmon radiation forces. Phys. Rev. Lett., 96, 238101(2006).
[18] O. Preining. Photophoresis(1966).
[19] H. Horvath. Photophoresis–a forgotten force?. Kona Powder Part. J., 31, 181(2014).
[22] H. Li et al. Optical pulling forces and their applications. Adv. Opt. Photonics, 12, 288(2020).
[24] J. R. Melcher. Electric fields and moving media. IEEE Trans. Educ., 17, 100(1974).
[26] R. A. Bowling. A theoretical review of particle adhesion. Particles Surfaces, 129(1988).
[27] M. A. Day. The no-slip condition of fluid dynamics. Erkenntnis, 33, 285(1990).
[30] G. Torr. The acoustic radiation force. Am. J. Phys., 52, 402(1984).
[31] W. L. M. Nyborg. 11. Acoustic streaming. Phys. Acoust., 2, 265(1965).
[32] L. Meng et al. Acoustic tweezers. J. Phys. D, 52, 273001(2019).
[39] L. Landau, E. Lifshitz. Mechanics(1976).
[40] J. C. Maxwell. A Treatise on Electricity and Magnetism, 1(1873).
[41] J. H. Poynting. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proc. Math. Phys. Eng. Sci., 82, 560(1909).
[43] L. D. Landau et al. Electrodynamics of Continuous Media, 8(2013).
[45] H. Minkowski. Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern. Nachr. von Ges. Wiss. zu Göttingen, Mathematisch-Physikalische Klasse, 1908, 53(1908).
[49] R. Jones. Radiation pressure in a refracting medium. Nature, 167, 439(1951).
[50] R. V. Jones, J. Richards. The pressure of radiation in a refracting medium. Proc. R. Soc. London. Ser. A Math. Phys. Sci., 221, 480(1954).
[52] R. V. Jones, B. Leslie. The measurement of optical radiation pressure in dispersive media. Proc. R. Soc. London. Ser. A Math. Phys. Sci., 360, 347(1978).
[59] S. Van Enk, G. Nienhuis. Spin and orbital angular momentum of photons. EPL, 25, 497(1994).
[61] M. V. Berry. Optical currents. J. Opt. A Pure Appl. Opt., 11, 094001(2009).
[70] M. Padgett, R. Bowman. Tweezers with a twist. Nat. Photonics, 5, 343(2011).
[72] K. C. Neuman, S. M. Block. Optical trapping. Rev. Sci. Instrum., 75, 2787(2004).
[76] R. Piazza. Thermophoresis: moving particles with thermal gradients. Soft Matter, 4, 1740(2008).
[80] R. L. Angelo. Experimental Determination of Selected Accommodation Coefficients and Experimental Determination of the Heat of Dissociation of Iodine(1951).
[81] Z. Chen, J. Li, Y. Zheng. Heat-mediated optical manipulation. Chem. Rev., 122, 3122(2021).
[82] M. J. Riedl. Optical Design Fundamentals for Infrared Systems(2001).
[83] E. Hecht. Optics(2012).
[87] L. Lin et al. Opto-thermoelectric nanotweezers. Nat. Photonics, 12, 195(2018).
[90] K. Kendall. Adhesion: molecules and mechanics. Science, 263, 1720(1994).
[92] V. G. Shvedov et al. Giant optical manipulation. Phys. Rev. Lett., 105, 118103(2010).
[93] S. Nedev et al. Optical force stamping lithography. Nano Lett., 11, 5066(2011).
[95] J.-H. Baek, S.-U. Hwang, Y.-G. Lee. Trap stiffness in optical tweezers. Mirror, 685, 61(2007).
[96] J. R. Moffitt et al. Recent advances in optical tweezers. Annu. Rev. Biochem., 77, 205(2008).
[99] T. Li, M. G. Raizen. Brownian motion at short time scales. Ann. Phys. Lpz., 525, 281(2013).
[106] G. Liu, Q. Li, M. Qiu. Sacrificial solder based nanowelding of ZnO nanowires. J. Phys. Conf. Ser., 680, 012027(2016).
[108] S. A. Maier. Plasmonics: Fundamentals and Applications, 1(2007).
[112] C. Min et al. Focused plasmonic trapping of metallic particles. Nat. Commun., 4, 2891(2013).
[115] A. Lehmuskero et al. Laser trapping of colloidal metal nanoparticles. ACS Nano, 9, 3453(2015).
[128] S. Yang et al. Nanoparticle trapping in a quasi-BIC system. ACS Photonics, 8, 1961(2021).
[141] S. Yu et al. On-chip optical tweezers based on freeform optics. Optica, 8, 409(2021).
[153] V. N. Mahajan. Aberration Theory Made Simple, 6(1991).
[159] J. Li et al. Opto-refrigerative tweezers. Sci. Adv., 7, eabh1101(2021).
[162] L. Lin et al. Interfacial-entropy-driven thermophoretic tweezers. Lab Chip, 17, 3061(2017).
[168] L. Lin et al. Opto-thermophoretic assembly of colloidal matter. Sci. Adv., 3, e1700458(2017).
[169] X. Wang et al. Graphene-based opto-thermoelectric tweezers. Adv. Mater., 34, 2107691(2022).
[170] V. Vladimirsky, Y. Terletzky. Hydrodynamical theory of translational Brownian motion. Zh. Eksp. Teor. Fiz, 15, 258(1945).
[174] T. M. Squires, M. Z. Bazant. Induced-charge electro-osmosis. J. Fluid Mech., 509, 217(2004).
[183] S.-H. Lee, Y. Roichman, D. G. Grier. Optical solenoid beams. Opt. Express, 18, 6988(2010).
[196] A. Oliner, T. Tamir. Backward waves on isotropic plasma slabs. J. Appl. Phys., 33, 231(1962).
[198] W. Ding et al. Photonic tractor beams: a review. Adv. Photonics, 1, 024001(2019).
[200] V. Chernyak, S. Beresnev. Photophoresis of aerosol particles. J. Aerosol Sci., 24, 857(1993).
[203] J. Maxwell. VII: On stresses in rarefied gases arising from inequalities of temperature. Phil. Trans. R. Soc., 170, 231(1879).
[204] X. Peng et al. Opto-thermoelectric microswimmers. Light Sci. Appl., 9, 141(2020).
[206] K. Y. Bliokh et al. Spin–orbit interactions of light. Nat. Photonics, 9, 796(2015).
[215] P. Allen. A radiation torque experiment. Am. J. Phys., 34, 1185(1966).
[218] J. Chen et al. Negative optical torque. Sci. Rep., 4, 6386(2014).
[226] M. Liu et al. Light-driven nanoscale plasmonic motors. Nat. Nanotechnol., 5, 570(2010).
[227] S. Wang, C. T. Chan. Lateral optical force on chiral particles near a surface. Nat. Commun., 5, 3307(2014).
[231] N. Berova, K. Nakanishi, R. W. Woody. Circular Dichroism: Principles and Applications(2000).
[237] K. Dietrich et al. Microscale marangoni surfers. Phys. Rev. Lett., 125, 098001(2020).
[250] A. Habenicht et al. Jumping nanodroplets. Science, 309, 2043(2005).
[255] H. Gong et al. Gold nanoparticle transfer through photothermal effects in a metamaterial absorber by nanosecond laser. Sci. Rep., 4, 6080(2014).
[261] D. B. Chrisey, G. K. Hubler. Pulsed Laser Deposition of Thin Films(1994).
[267] M. J. Sinclair. ITHERM 2000. Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 127(2000).
[269] S. Lu et al. Nanotube micro-opto-mechanical systems. Nanotechnology, 18, 065501(2007).
[270] B. Han et al. Carbon-based photothermal actuators. Adv. Funct. Mater., 28, 1802235(2018).
[271] X. Zhang et al. Photoactuators and motors based on carbon nanotubes with selective chirality distributions. Nat. Commun., 5, 2983(2014).
[272] B. Han et al. Plasmonic-assisted graphene oxide artificial muscles. Adv. Mater., 31, 1806386(2019).
[284] A. Lendlein et al. Light-induced shape-memory polymers. Nature, 434, 879(2005).
[299] J. Li et al. Opto-thermocapillary nanomotors on solid substrates. ACS Nano, 16, 8820(2022).
[305] C. V. Thompson. Solid-state dewetting of thin films. Annu. Rev. Mater. Res., 42, 399(2012).
[319] J. Ma, L. Bai, M. D. Wang. Transcription under torsion. Science, 340, 1580(2013).
[326] J. T. Lewis, J. Pulè. Dynamical Theories of Brownian Motion(1975).
[331] A. Einstein. Über gravitationswellen. Sitzungsber. Preußischen Akad. Wiss., 1918, 154(1918).
[335] J. Millen et al. Optomechanics with levitated particles. Rep. Prog. Phys., 83, 026401(2020).
[342] D. Smalley et al. A photophoretic-trap volumetric display. Nature, 553, 486(2018).
[345] R. Oltra et al. Modelling and diagnostic of pulsed laser-solid interactions. applications to laser cleaning. Proc. SPIE, 3385, 499(2000).
[346] V. E. Gusev, A. A. Karabutov. Laser optoacoustics. NASA STI Repository Tech. Rep. A, 93, 16842(1991).
[348] D. Frost. Dynamics of explosive boiling of a droplet. Phys. Fluids, 31, 2554(1988).
[356] V. Malka. Laser plasma accelerators. Phys. Plasmas, 19, 055501(2012).
[357] E. Gschwendtner, P. Muggli. Plasma wakefield accelerators. Nat. Rev. Phys., 1, 246(2019).
[359] T. Tajima, X. Yan, T. Ebisuzaki. Wakefield acceleration. Rev. Mod. Plasma Phys., 4, 7(2020).
[360] L. Evans. The large hadron collider. New J. Phys., 9, 335(2007).
[380] H. Ding et al. Universal optothermal micro/nanoscale rotors. Sci. Adv., 8, eabn8498(2022).
[385] A. Ozcelik et al. Acoustic tweezers for the life sciences. Nat. Methods, 15, 1021(2018).

Set citation alerts for the article
Please enter your email address