[1] CHOI J U, VORONINA N, SUN Y K, et al. Recent progress and perspective of advanced high-energy Co-less Ni-rich cathodes for Li-ion batteries: Yesterday, today, and tomorrow[J]. Adv Energy Mater, 2020, 10(42): 2002027.
[5] LEE G H, LAU V W H, YANG W L, et al. Utilizing oxygen redox in layered cathode materials from multiscale perspective[J]. Adv Energy Mater, 2021, 11(27): 2003227.
[6] GE X R, YU J, ZHU L H, et al. Irreversible transition from GaO6 octahedra to GaO4 tetrahedra for improved electrochemical stability in Ga-doped Li(Ni0.9Co0.1)O2[J]. Inorg Chem, 2021, 60(5): 3015-3024.
[8] JIANG M, DANILOV D L, EICHEL R A, et al. A review of degradation mechanisms and recent achievements for Ni-rich cathode-based Li-ion batteries[J]. Adv Energy Mater, 2021, 11(48): 2103005.
[10] XU C, REEVES P J, JACQUET Q, et al. Phase behavior during electrochemical cycling of Ni-rich cathode materials for Li-ion batteries[J]. Adv Energy Mater, 2021, 11(7): 2003404.
[11] XU G L, LIU X, DAALI A, et al. Challenges and strategies to advance high-energy nickel-rich layered lithium transition metal oxide cathodes for harsh operation[J]. Adv Funct Mater, 2020, 30(46): 2004748.
[12] CUI Z, XIE Q, MANTHIRAM A. A cobalt‐ and manganese‐free high‐nickel layered oxide cathode for long‐life, safer lithium‐ion batteries[J]. Adv Energy Mater, 2021, 11(41): 22102421.
[14] GUO Y J, ZHANG C H, XIN S, et al. Competitive doping chemistry for nickel-rich layered oxide cathode materials[J]. Angew Chem Int Ed Engl, 2022, 61(21): e202116865.
[15] ZHANG Z, HONG B, YI M Y, et al. In situ co-doping strategy for achieving long-term cycle stability of single-crystal Ni-rich cathodes at high voltage[J]. Chem Eng J, 2022, 445: 136825.
[16] PARK G T, PARK N Y, NOH T C, et al. High-performance Ni-rich Li[Ni0.9-xCo0.1Alx]O2 cathodes via multi-stage microstructural tailoring from hydroxide precursor to the lithiated oxide[J]. Energy Environ Sci, 2021, 14(9): 5084-5095.
[17] XIE Q, CUI Z H, MANTHIRAM A. Unveiling the stabilities of nickel-based layered oxide cathodes at an identical degree of delithiation in lithium-based batteries[J]. Adv Mater, 2021, 33(32): e2100804.
[18] JAMIL S, FASEHULLAH M, JABAR B, et al. Significantly fastened redox kinetics in single crystal layered oxide cathode by gradient doping[J]. Nano Energy, 2022, 94: 106961.
[19] RYU H H, PARK N Y, YOON D R, et al. New class of Ni-rich cathode materials Li[NixCoyB1-x-y]O2 for next lithium batteries[J]. Adv Energy Mater, 2020, 10(25): 2000495.
[20] MA Q X, WANG Y Q, LAI F L, et al. Induction and maintenance of local structural durability for high-energy nickel-rich layered oxides[J]. Small Methods, 2022, 6(6): e2200255.
[21] ZHANG S S. Problems and their origins of Ni-rich layered oxide cathode materials[J]. Energy Storage Mater, 2020, 24: 247-254.
[22] RATHORE D, GARAYT M, LIU Y L, et al. Preventing interdiffusion during synthesis of Ni-rich core-shell cathode materials[J]. ACS Energy Lett, 2022, 7(7): 2189-2195.
[24] LIU X S, HAO J L, ZHANG M J, et al. Mitigating the surface reconstruction of Ni-rich cathode via P2-type Mn-rich oxide coating for durable lithium ion batteries[J]. ACS Appl Mater Interfaces, 2022, 14(26): 30398-30409.
[27] CHU B, YOU L, LI G, et al. Revealing the role of W-doping in enhancing the electrochemical performance of the LiNi0.6Co0.2Mn0.2O2 cathode at 4.5 V[J]. ACS Appl Mater Interfaces, 2021, 13(6): 7308-7316.
[28] PARK G T, YOON D R, KIM U H, et al. Ultrafine-grained Ni-rich layered cathode for advanced Li-ion batteries[J]. Energy Environ Sci, 2021, 14(12): 6616-6626.
[29] SHEN Y B, YAO X J, ZHANG J H, et al. Sodium doping derived electromagnetic center of lithium layered oxide cathode materials with enhanced lithium storage[J]. Nano Energy, 2022, 94: 106900.
[30] MAO G H, LUO J, ZHOU Q, et al. Improved cycling stability of high nickel cathode material for lithium ion battery through Al- and Ti-based dual modification[J]. Nanoscale, 2021, 13(44): 18741-18753.
[31] XIAO Z L, CHI Z Z, SONG L B, et al. LiTa2PO8 coated nickel-rich cathode material for improved electrochemical performance at high voltage[J]. Ceram Int, 2020, 46(6): 8328-8333.
[32] HUANG Y, LIU X, YU R Z, et al. Tellurium surface doping to enhance the structural stability and electrochemical performance of layered Ni-rich cathodes[J]. ACS Appl Mater Interfaces, 2019, 11(43): 40022-40033.
[33] XIE Q, LI W D, MANTHIRAM A. A Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density Li-ion batteries[J]. Chem Mater, 2019, 31(3): 938-946.
[34] WU F, LIU N, CHEN L, et al. Improving the reversibility of the H2-H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability[J]. Nano Energy, 2019, 59: 50-57.
[35] XU Z R, JIANG Z S, KUAI C G, et al. Charge distribution guided by grain crystallographic orientations in polycrystalline battery materials[J]. Nat Commun, 2020, 11(1): 83.
[36] YANG W, LI H D, WANG D, et al. Ta induced fine tuning of microstructure and interface enabling Ni-rich cathode with unexpected cyclability in pouch-type full cell[J]. Nano Energy, 2022, 104: 107880.