• Photonics Research
  • Vol. 6, Issue 3, 193 (2018)
Fu-Li Wang, Xiu-Wen Ma, Yong-Zhen Huang*, Yue-De Yang, Jun-Yuan Han, and Jin-Long Xiao
Author Affiliations
  • State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors & Institute of Material Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100083, China
  • show less
    DOI: 10.1364/PRJ.6.000193 Cite this Article Set citation alerts
    Fu-Li Wang, Xiu-Wen Ma, Yong-Zhen Huang, Yue-De Yang, Jun-Yuan Han, Jin-Long Xiao. Relative intensity noise in high-speed hybrid square-rectangular lasers[J]. Photonics Research, 2018, 6(3): 193 Copy Citation Text show less
    References

    [1] A. B. Matsko, V. S. Ilchenko. Optical resonators with whispering gallery modes I: basics. IEEE J. Sel. Top. Quantum Electron., 12, 3-14(2006).

    [2] A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, J. E. Bowers. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt. Express, 14, 9203-9210(2006).

    [3] J. Van Campenhout, P. Rojo-Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J. M. Fedeli, C. Lagahe, R. Baets. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Opt. Express, 15, 6744-6749(2007).

    [4] J. Ward, O. Benson. WGM microresonators: sensing, lasing and fundamental optics with microspheres. Laser Photon. Rev., 5, 553-570(2011).

    [5] S. Yang, Y. Wang, H. Sun. Advances and prospects for whispering gallery mode microcavities. Adv. Opt. Mater., 3, 1136-1162(2015).

    [6] X. M. Lv, Y. Z. Huang, L. X. Zou, H. Long, Y. Du. Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor. Laser Photon. Rev., 7, 818-829(2013).

    [7] L. X. Zou, Y. Z. Huang, X. M. Lv, H. Long, J. L. Xiao, Y. D. Yang, Y. Du. Dynamic characteristics of AlGaInAs/InP octagonal resonator microlaser. Appl. Phys. B, 117, 453-458(2014).

    [8] N. H. Zhu, W. Li, J. M. Wen, W. Han, W. Chen, L. Xie. Enhanced modulation bandwidth of a Fabry-Pérot semiconductor laser subject to light injection from another Fabry-Pérot laser. IEEE J. Quantum Electron., 44, 528-535(2008).

    [9] H. Dalir, F. Koyama. Bandwidth enhancement of single-mode VCSEL with lateral optical feedback of slow light. IEICE Electron. Express, 8, 1075-1081(2011).

    [10] Z. X. Xiao, Y. Z. Huang, Y. D. Yang, M. Tang, J. L. Xiao. Modulation bandwidth enhancement for coupled twin-square microcavity lasers. Opt. Lett., 42, 3173-3176(2017).

    [11] S. I. Gonda, S. Mukai. Degradation and intensity fluctuations in CW AlGaAs double-heterostructure junction lasers. IEEE J. Quantum Electron., 11, 545-550(1975).

    [12] G. P. Agrawal. Mode-partition noise and intensity correlation in a two-mode semiconductor laser. Phys. Rev. A, 37, 2488-2494(1988).

    [13] C. Su, J. Schlafer, R. Lauer. Explanation of low‐frequency relative intensity noise in semiconductor lasers. Appl. Phys. Lett., 57, 849-851(1990).

    [14] H. X. Shi, D. Cohen, J. Barton, M. Majewski, L. A. Coldren, M. C. Larson, G. A. Fish. Relative intensity noise measurements of a widely tunable sampled-grating DBR laser. IEEE Photon. Technol. Lett., 14, 759-761(2002).

    [15] F. Tan, M. K. Wu, M. Liu, M. Feng, N. Holonyak. Relative intensity noise in high speed microcavity laser. Appl. Phys. Lett., 103, 141116(2013).

    [16] F. Tan, M. K. Wu, M. Liu, M. Feng, N. Holonyak. 850  nm oxide-VCSEL with low relative intensity noise and 40  Gb/s error free data transmission. IEEE Photon. Technol. Lett., 26, 289-292(2014).

    [17] X. W. Ma, Y. Z. Huang, Y. D. Yang, J. L. Xiao, H. Z. Weng, Z. X. Xiao. Mode coupling in hybrid square-rectangular lasers for single mode operation. Appl. Phys. Lett., 109, 071102(2016).

    [18] X. W. Ma, Y. Z. Huang, Y. D. Yang, H. Z. Weng, J. L. Xiao, M. Tang, Y. Du. Mode and lasing characteristics for hybrid square-rectangular lasers. IEEE J. Sel. Top. Quantum Electron., 23, 1500409(2017).

    [19] H. Z. Weng, Y. Z. Huang, X. W. Ma, F. L. Wang, M. L. Liao, Y. D. Yang, J. L. Xiao. Spectral linewidth analysis for square microlasers. IEEE Photon. Technol. Lett., 29, 1931-1934(2017).

    [20] G. Morthier, R. Schatz, O. Kjebon. Extended modulation bandwidth of DBR and external cavity lasers by utilizing a cavity resonance for equalization. IEEE J. Quantum Electron., 36, 1468-1475(2000).

    [21] P. Bardella, I. Montrosset. A new design procedure for DBR lasers exploiting the photon-photon resonance to achieve extended modulation bandwidth. IEEE J. Sel. Top. Quantum Electron., 19, 1502408(2013).

    [22] H. Dalir, F. Koyama. High-speed operation of bow-tie-shaped oxide aperture VCSELs with photon-photon resonance. Appl. Phys. Express, 7, 022102(2014).

    [23] P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson. Impact of photon lifetime on high-speed VCSEL performance. IEEE J. Sel. Top. Quantum Electron., 17, 1603-1613(2011).

    [24] L. A. Coldren, S. W. Corzine, M. L. Mashanovitch. Diode Lasers and Photonic Integrated Circuits, 230(2012).

    [25] R. Olshansky, P. Hill, V. Lanzisera, W. Powazinik. Frequency response of 1.3  μm InGaAsP high speed semiconductor lasers. IEEE J. Quantum Electron., 23, 1410-1418(1987).

    [26] F. Tan, R. Bambery, M. Feng, N. Holonyak. Relative intensity noise of a quantum well transistor laser. Appl. Phys. Lett., 101, 151118(2012).

    [27] Y. Yamamoto, N. Imoto. Internal and external field fluctuations of a laser oscillator: Part I—Quantum mechanical Langevin treatment. IEEE J. Quantum Electron., 22, 2032-2042(1986).

    [28] C. Henry. Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron., 18, 259-264(1982).

    [29] L. Coldren, Y. Jan, T. Mason, M. Heimbuch, S. Denbaars. Properties of widely-tunable integrated WDM sources and receivers. 10th IEEE Lasers and Electro-Optics Society Annual Meeting (LEOS), 331-332(1997).

    CLP Journals

    [1] Nianqiang Li, H. Susanto, B. R. Cemlyn, I. D. Henning, M. J. Adams. Modulation properties of solitary and optically injected phased-array semiconductor lasers[J]. Photonics Research, 2018, 6(9): 908

    [2] You-Zeng Hao, Fu-Li Wang, Min Tang, Hai-Zhong Weng, Yue-De Yang, Jin-Long Xiao, Yong-Zhen Huang. Widely tunable single-mode lasers based on a hybrid square/rhombus-rectangular microcavity[J]. Photonics Research, 2019, 7(5): 543

    Fu-Li Wang, Xiu-Wen Ma, Yong-Zhen Huang, Yue-De Yang, Jun-Yuan Han, Jin-Long Xiao. Relative intensity noise in high-speed hybrid square-rectangular lasers[J]. Photonics Research, 2018, 6(3): 193
    Download Citation