• Chinese Journal of Lasers
  • Vol. 42, Issue 11, 1102001 (2015)
Zhang Peng1、2、3、*, Jiang Maohua1、2、3, Zhu Renjiang1、2、3, Cui Yuting1、2、3, and Zhang Yu1、2、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/cjl201542.1102001 Cite this Article Set citation alerts
    Zhang Peng, Jiang Maohua, Zhu Renjiang, Cui Yuting, Zhang Yu. Thermal Conductivity of Nanostructures in an External-Cavity Surface-Emitting Laser[J]. Chinese Journal of Lasers, 2015, 42(11): 1102001 Copy Citation Text show less
    References

    [1] Kuznetsov M, Hakimi F, Sprague R, et al.. High-power (>0.5-WCW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00beams[J]. IEEE Photonic Tech Lett, 1997, 9(8): 1063-1065.

    [2] Rudin B, Rutz A, Hoffmann M, et al.. Highly efficient optically pumped vertical-emitting semiconductor laser with more than 20 W average output power in a fundamental transverse mode[J]. Opt Lett, 2008, 33(22): 2719-2721.

    [3] Heinen B, Wang T L, Sparenberg M, et al.. 106 W continuous-wave output power from vertical-external-cavity surface-emitting laser [J]. Electron Lett, 2012, 48(9): 516-517.

    [4] Lindberg H, Illek S, Pietzonka I, et al.. Recent advances in VECSELs for laser projection applications[C]. SPIE, 2011, 7919: 79190D.

    [5] Espinosa R A, Filippidis G, Hamilton C, et al.. Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms[J]. Biomed Opt Express, 2011, 2(4): 739-747.

    [6] Kannengiesser C, Ostroumov V, Pfeufer V, et al.. Ten years optically pumped semiconductor lasers:review, state-of-the-art, and future developments[C]. SPIE, 2010, 7578: 75780W.

    [7] Scheller M, Young A, Yarborough J M, et al.. Intracavity generation of continuous wave terahertz radiation[C]. SPIE, 2012, 8240: 824007.

    [8] Link S M, Klenner A, Mangold M, et al.. Dual-comb modelocked laser[J]. Opt Express, 2015, 23(5): 5521-5531.

    [9] Wagner J, Hugger S, R?sener B, et al.. Infrared semiconductor laser modules for DIRCM applications[C]. SPIE, 2009, 7483: 74830F.

    [10] Burd S, Leibfried D, Wilson A C, et al.. Optically pumped semiconductor lasers for atomic and molecular physics[C]. SPIE, 2015, 9349: 93490P.

    [11] Corzine S W, Geels R S, Scott J W, et al.. Design of Fabry-Perot surface-emitting lasers with a periodic gain structure[J]. IEEE J Quantum Electron, 1989, 25(6): 1513-1524.

    [12] Kemp A J, Valentine G J, Hopkins J M, et al.. Thermal management in vertical-external-cavity surface emitting laser finite element analysis of a heatspreader approach[J]. IEEE J Quantum Electron, 2005, 41(2): 148-155.

    [13] Lindberg H, Strassner M, Gerster E, et al.. Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers[J]. IEEE J Selected Topics in Quantum Electronics, 2005, 11(5): 1126-1134.

    [14] Zhang P, Song Y R, Zhang X P, et al.. Numerical analysis of thermal effects in InGaAs system vertical-external-cavity surface-emitting laser[J]. Opt Rev, 2011, 18(4): 317-323.

    [15] Vetter S L, Calvez S. Thermal management of near-infrared semiconductor disk lasers with AlGaAs mirrors and lattice (mis) matched active regions[J]. IEEE J Quantum Electron, 2012, 48(3): 345-352.

    [16] Chen G, Tien C L. Thermal conductivities of quantum well structures[J]. J Thermophysics Heat Transfer, 1993, 7(2): 311-318.

    [17] Hicks L D, Dresselhaus M S. Effect of quantum-well structures on the thermoelectric figure of merit[J]. Phys Rev B, 1993, 47(19): 12727- 12731.

    [18] Cahill D G, Ford W K, Goodson K E, et al.. Nanoscale thermal transport[J]. J Appl Phys, 2003, 93(2): 793-818.

    [19] Ren S Y, Dow J D. Thermal conductivity of superlattices[J]. Phys Rev B, 1982, 25(6): 3750-3755.

    [20] Simkin M V, Mahan G D. Minimum thermal conductivity of superlattices[J]. Phys Rev Lett, 2000, 84(5): 927-930.

    [21] Chen G. Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices[J]. Phys Rev B, 1998, 57(23): 14958-14973.

    [22] Yang B, Chen G. Partially coherent phonon heat conduction in superlattices[J]. Phys Rev B, 2003, 67(19): 195311.

    [23] Liang L H, Li B. Size-dependent thermal conductivity of nanoscale semiconducting systems[J]. Phys Rev B, 2006, 73(15): 153303.

    [24] Alvarez F X, Quintana J A, Jou D, et al.. Analytical expression for thermal conductivity of superlattices[J]. J Appl Phys, 2010, 107(8): 084303.

    [25] Mcgaughey A J H, Landry E S, Sellan D P, et al.. Size dependent model for thin film and nanowire thermal conductivity[J]. Appl Phys Lett, 2011, 99(13): 131904.

    [26] Nakwaski W. Thermal conductivity of binary ternary and quaternary III-V compounds[J]. J Appl Phys, 1988, 64(1): 159-166.

    [27] Liang L H, Wei Y G, Li B. Size-dependent interface phonon transmission and thermal conductivity of nanolaminates[J]. J Appl Phys, 2008, 103(8): 084314.

    [28] Adachi S. Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors[M]. Chichester: John Wiley & Sons, 2009, 28.

    [29] Capinski W S, Maris H J. Thermal conductivity of GaAs/AlAs superlattices[J]. Physica B: Condensed Matter, 1996, 219: 699-701.

    [30] Capinski W S, Maris H J, Ruf T, et al.. Thermal conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump and probe technique[J]. Phys Rev B, 1999, 59(12): 8105-8113.

    [31] Duquesne J Y. Thermal conductivity of semiconductor superlattices experimental study of interface scattering[J]. Phys Rev B, 2009, 79 (15): 153304.

    [32] Yao T. Thermal properties of AlAs/GaAs superlattices[J]. Appl Phys Lett, 1987, 51(22): 1798-1800.

    [33] Yu X Y, Chen G, Verma A, et al.. Temperature dependence of thermophysical properties of GaAs/AlAs periodic structure[J]. Appl Phys Lett, 1995, 67(24): 3554-3556.

    Zhang Peng, Jiang Maohua, Zhu Renjiang, Cui Yuting, Zhang Yu. Thermal Conductivity of Nanostructures in an External-Cavity Surface-Emitting Laser[J]. Chinese Journal of Lasers, 2015, 42(11): 1102001
    Download Citation