• Optics and Precision Engineering
  • Vol. 31, Issue 6, 905 (2023)
Yuanfeng LIAN1,2,*, Guangyang LI1, and Shaochen SHEN1
Author Affiliations
  • 1China University of Petroleum, Beijing02249, China
  • 2Beijing Key Laboratory of Petroleum Data Mining, China University of Petroleum., Beijing1049, China
  • show less
    DOI: 10.37188/OPE.20233106.0905 Cite this Article
    Yuanfeng LIAN, Guangyang LI, Shaochen SHEN. Vehicle detection method based on remote sensing image fusion of superpixel and multi-modal sensing network[J]. Optics and Precision Engineering, 2023, 31(6): 905 Copy Citation Text show less
    References

    [1] T MORANDUZZO, F MELGANI. Automatic car counting method for unmanned aerial vehicle images. IEEE Transactions on Geoscience and Remote Sensing, 52, 1635-1647(2014).

    [2] A KEMBHAVI, D HARWOOD, L S DAVIS. Vehicle detection using partial least squares. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 1250-1265(2011).

    [3] YUN, WEI, YUN, WEI. Multi-vehicle detection algorithm through combining Harr and HOG features. Mathematics and Computers in Simulation, 155, 130-145(2019).

    [4] S TUERMER, F KURZ, P REINARTZ et al. Airborne vehicle detection in dense urban areas using HoG features and disparity maps. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6, 2327-2337(2013).

    [5] C PAPAGEORGIOU, T POGGIO. A trainable system for object detection. International Journal of Computer Vision, 38, 15-33(2000).

    [6] P P LIANG, G TEODORO, H B LING et al. Multiple Kernel Learning for Vehicle Detection in Wide Area Motion Imagery, 1629-1636(2012).

    [7] S F HE, R W H LAU, W X LIU et al. SuperCNN: a superpixelwise convolutional neural network for salient object detection. International Journal of Computer Vision, 115, 330-344(2015).

    [8] 8陈允杰, 马辰阳, 孙乐, 等. 基于边缘修正的高光谱图像超像素空谱核分类方法[J]. 电子学报, 2019, 47(1): 73-81. doi: 10.3969/j.issn.0372-2112.2019.01.010CHENY J, MACH Y, SUNL, et al. Edge-modified superpixel based spectral-spatial kernel method for hyperspectral image classification[J]. Acta Electronica Sinica, 2019, 47(1): 73-81.(in Chinese). doi: 10.3969/j.issn.0372-2112.2019.01.010

    [9] Z Y CUI, Z S HOU, H Z YANG et al. A CFAR target-detection method based on superpixel statistical modeling. IEEE Geoscience and Remote Sensing Letters, 18, 1605-1609(2021).

    [10] 10廖苗, 李阳, 赵于前, 等. 一种新的图像超像素分割方法[J]. 电子与信息学报, 2020, 42(2): 364-370. doi: 10.11999/JEIT190111LIAOM, LIY, ZHAOY Q, et al. A new method for image superpixel segmentation[J]. Journal of Electronics & Information Technology, 2020, 42(2): 364-370. (in Chinese). doi: 10.11999/JEIT190111

    [11] 11任凤雷, 何昕, 魏仲慧, 等. 基于DeepLabV3+与超像素优化的语义分割[J]. 光学 精密工程, 2019, 27(12): 2722-2729. doi: 10.3788/ope.20192712.2722RENF L, HEX, WEIZH H, et al. Semantic segmentation based on DeepLabV3+ and superpixel optimization[J]. Opt. Precision Eng., 2019, 27(12): 2722-2729. (in Chinese). doi: 10.3788/ope.20192712.2722

    [12] 12李静. 基于NMI特征的遥感影像线性迭代聚类超像素分割算法[J]. 光学 精密工程, 2022, 30(6): 734-742.LIJ. SLIC super-pixel segmentation algorithm base on NMI features used in remote sensing image[J]. Opt. Precision Eng., 2022, 30(6): 734-742.(in Chinese)

    [13] 13姚群力, 胡显, 雷宏. 基于多尺度卷积神经网络的遥感目标检测研究[J]. 光学学报, 2019, 39(11): 346-353. doi: 10.3788/aos201939.1128002YAOQ L, HUX, LEIH. Object detection in remote sensing images using multiscale convolutional neural networks[J]. Acta Optica Sinica, 2019, 39(11): 346-353.(in Chinese). doi: 10.3788/aos201939.1128002

    [14] X Y CHEN, S M XIANG, C L LIU et al. Vehicle detection in satellite images by hybrid deep convolutional neural networks. IEEE Geoscience and Remote Sensing Letters, 11, 1797-1801(2014).

    [15] 15于野, 艾华, 贺小军, 等. A-FPN算法及其在遥感图像船舶检测中的应用[J]. 遥感学报, 2020, 24(2): 107-115. doi: 10.11834/jrs.20208264YUY, AIH, HEX J, et al. Attention-based feature pyramid networks for ship detection of optical remote sensing image[J]. Journal of Remote Sensing, 2020, 24(2): 107-115.(in Chinese). doi: 10.11834/jrs.20208264

    [16] 16张康, 黑保琴, 周壮, 等. 变异系数降维的CNN高光谱遥感图像分类[J]. 遥感学报, 2018, 22(1): 87-96.ZHANGK, HEIB Q, ZHOUZH, et al. CNN with coefficient of variation-based dimensionality reduction for hyperspectral remote sensing images classification[J]. Journal of Remote Sensing, 2018, 22(1): 87-96.(in Chinese)

    [17] 17王振庆, 周艺, 王世新, 等. IEU-Net高分辨率遥感影像房屋建筑物提取[J]. 遥感学报, 2021, 25(11): 2245-2254. doi: 10.11834/jrs.20210042WANGZH Q, ZHOUY, WANGSH X, et al. House building extraction from high-resolution remote sensing images based on IEU-Net[J]. National Remote Sensing Bulletin, 2021, 25(11): 2245-2254.(in Chinese). doi: 10.11834/jrs.20210042

    [18] 18杨州, 慕晓冬, 王舒洋, 等. 基于多尺度特征融合的遥感图像场景分类[J]. 光学 精密工程, 2018, 26(12): 3099-3107. doi: 10.3788/OPE.20182612.3099YANGZ, MUX D, WANGSH Y, et al. Scene classification of remote sensing images based on multiscale features fusion[J]. Opt. Precision Eng., 2018, 26(12): 3099-3107.(in Chinese). doi: 10.3788/OPE.20182612.3099

    [19] 19陈欣, 万敏杰, 马超, 等. 采用多尺度特征融合SSD的遥感图像小目标检测[J]. 光学 精密工程, 2021, 29(11): 2672-2682. doi: 10.37188/OPE.20212911.2672CHENX, WANM J, MACH, et al. Recognition of small targets in remote sensing image using multi-scale feature fusion-based shot multi-box detector[J]. Opt. Precision Eng., 2021, 29(11): 2672-2682.(in Chinese). doi: 10.37188/OPE.20212911.2672

    [20] 20谷雨, 刘俊, 沈宏海, 等. 基于改进多尺度分形特征的红外图像弱小目标检测[J]. 光学 精密工程, 2020, 28(6): 1375-1386. doi: 10.3788/ope.20202806.1375GUY, LIUJ, SHENH H, et al. Infrared dim-small target detection based on an improved multiscale fractal feature[J]. Opt. Precision Eng., 2020, 28(6): 1375-1386.(in Chinese). doi: 10.3788/ope.20202806.1375

    [21] C COUPRIE, C FARABET, L NAJMAN et al. Indoor Semantic Segmentation using depth information. arXiv, 1301-3572(2013). https://arxiv.org/abs/1301.3572

    [22] D P FAN, Z LIN, Z ZHANG et al. Rethinking RGB-D salient object detection: models, data sets, and large-scale benchmarks. IEEE Transactions on Neural Networks and Learning Systems, 32, 2075-2089(2021).

    [23] 23杜守基, 邹峥嵘, 张云生, 等. 融合LiDAR点云与正射影像的建筑物图割优化提取方法[J]. 测绘学报, 2018, 47(4): 519-527. doi: 10.11947/j.AGCS.2018.20160534DUSH J, ZOUZH R, ZHANGY SH, et al. A building extraction method via graph cuts algorithm by fusion of LiDAR point cloud and orthoimage[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(4): 519-527.(in Chinese). doi: 10.11947/j.AGCS.2018.20160534

    [24] J B SHEN, X P HAO, Z Y LIANG et al. Real-time superpixel segmentation by DBSCAN clustering algorithm. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 25, 5933-5942(2016).

    [25] J B SHEN, Y F DU, W G WANG et al. Lazy random walks for superpixel segmentation. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 23, 1451-1462(2014).

    [26] J S CHEN, Z Q LI, B HUANG. Linear spectral clustering superpixel. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 26, 3317-3330(2017).

    [27] M VAN DEN BERGH, X BOIX, G ROIG et al. SEEDS: superpixels extracted via energy-driven sampling. Computer Vision, 13-26(2012).

    [28] D TANG, H Z FU, X C CAO. Topology Preserved Regular Superpixel, 765-768(2012).

    [29] E SHELHAMER, J LONG, T DARRELL. Fully Convolutional Networks for Semantic Segmentation, 640-651(2016).

    [30] O RONNEBERGER, P FISCHER, T BROX. U-net: convolutional networks for biomedical image segmentation. Lecture Notes in Computer Science, 234-241(2015).

    [31] V BADRINARAYANAN, A KENDALL, R CIPOLLA. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 2481-2495(2017).

    [32] H S ZHAO, J P SHI, X J QI et al. Pyramid Scene Parsing Network, 6230-6239(2017).

    [33] L C CHEN, Y ZHU, G PAPANDREOU et al. Encoder-decoder with atrous separable convolution for semantic image segmentation. arXiv, 1802-02611(2018). https://arxiv.org/abs/1802.02611

    [34] M A ISLAM, M ROCHAN, N D B BRUCE et al. Gated feedback Refinement Network for Dense Image Labeling, 4877-4885(2017).

    Yuanfeng LIAN, Guangyang LI, Shaochen SHEN. Vehicle detection method based on remote sensing image fusion of superpixel and multi-modal sensing network[J]. Optics and Precision Engineering, 2023, 31(6): 905
    Download Citation