[1] WANG Y N, FU L M. Micropumps and biomedical applications-A review[J]. Microelectronic Engineering, 2018, 195: 121-138.
WANG Y N, FU L M. Micropumps and biomedical applications-A review[J]. Microelectronic Engineering, 2018, 195: 121-138.
[3] LIU B D, ZHANG ZH, LI D SH. Review on micro pump for microfluidics[J]. Journal of Beijing University of Technology, 2018, 44(6): 812-824. (in Chinese)
LIU B D, ZHANG ZH, LI D SH. Review on micro pump for microfluidics[J]. Journal of Beijing University of Technology, 2018, 44(6): 812-824. (in Chinese)
[4] ZHANG J H, WANG Y, HUANG J. Advances in valveless piezoelectric pump with cone-shaped tubes[J]. Chinese Journal of Mechanical Engineering, 2017, 30(4): 766-781.
ZHANG J H, WANG Y, HUANG J. Advances in valveless piezoelectric pump with cone-shaped tubes[J]. Chinese Journal of Mechanical Engineering, 2017, 30(4): 766-781.
[5] QIAN C P, CHEN S, WANG J T, et al.. A piezoelectric hydraulic linear motor with velocity self-monitoring[J]. Sensors and Actuators A Physical, 2020, 306.
QIAN C P, CHEN S, WANG J T, et al.. A piezoelectric hydraulic linear motor with velocity self-monitoring[J]. Sensors and Actuators A Physical, 2020, 306.
[6] DENKENA B, HLSEMEYER L, BERGMEIER M. Performance of a piezo-hydraulic fine positioning device: Experimental analyses with a scaled model[J]. Production Engineering, 2017, 11(4-5): 613-619.
DENKENA B, HLSEMEYER L, BERGMEIER M. Performance of a piezo-hydraulic fine positioning device: Experimental analyses with a scaled model[J]. Production Engineering, 2017, 11(4-5): 613-619.
[7] LU S, CHAI B, LIU Y, et al.. The experimental study on the influence factors in adhesive dispensing dot diameter of impact jetting valve[J]. IEEE Transactions on Components Packaging & Manufacturing Technology, 2016, 6(2): 1-5.
LU S, CHAI B, LIU Y, et al.. The experimental study on the influence factors in adhesive dispensing dot diameter of impact jetting valve[J]. IEEE Transactions on Components Packaging & Manufacturing Technology, 2016, 6(2): 1-5.
[9] WANG J T, ZHAO X L, CHEN, X F, et al.. A piezoelectric resonance pump based on a flexible support. Micromachines, 2019, 10(3): 169.
WANG J T, ZHAO X L, CHEN, X F, et al.. A piezoelectric resonance pump based on a flexible support. Micromachines, 2019, 10(3): 169.
[11] DAUA V T, DINH T X. Numerical study and experimental validation of a valveless piezoelectric air blower for fluidic applications[J]. Sensors & Actuators B Chemical, 2015, 221: 1077-1083.
DAUA V T, DINH T X. Numerical study and experimental validation of a valveless piezoelectric air blower for fluidic applications[J]. Sensors & Actuators B Chemical, 2015, 221: 1077-1083.
[12] LIU C, ZHU Y. Simulation and experimental study of direct spray type piezoelectric air pumps based on synthetic jet[J]. Microsystem Technologies, 2019, 25(12): 4445-4454.
LIU C, ZHU Y. Simulation and experimental study of direct spray type piezoelectric air pumps based on synthetic jet[J]. Microsystem Technologies, 2019, 25(12): 4445-4454.
[13] WADA Y, KOYAMA D, NAKAMURA K. Acoustic streaming in an ultrasonic air pump with three-dimensional finite-difference time-domain analysis and comparison to the measurement [J]. Ultrasonics, 2014, 54(8): 2119-2125.
WADA Y, KOYAMA D, NAKAMURA K. Acoustic streaming in an ultrasonic air pump with three-dimensional finite-difference time-domain analysis and comparison to the measurement [J]. Ultrasonics, 2014, 54(8): 2119-2125.
[14] WANG J B, LIU G J, MA X, et al.. An integrated micro-mixer driven by valveless piezoelectric pump[J]. Journal of Xi'an Jiaotong University, 2018, 52(1): 92-99.(in Chinese)
WANG J B, LIU G J, MA X, et al.. An integrated micro-mixer driven by valveless piezoelectric pump[J]. Journal of Xi'an Jiaotong University, 2018, 52(1): 92-99.(in Chinese)
[15] NAM J, LI M, C S. Micromixing using swirling induced by three-dimensional dual surface acoustic waves (3D-dSAW)[J]. Sensors and Actuators B Chemical, 2018, 255(3): 3434-3440.
NAM J, LI M, C S. Micromixing using swirling induced by three-dimensional dual surface acoustic waves (3D-dSAW)[J]. Sensors and Actuators B Chemical, 2018, 255(3): 3434-3440.
[16] LIU G J, SHEN C L, YANG Z G, et al.. A disposable piezoelectric micropump with high performance for closed-loop insulin therapy system[J]. Sensors and Actuators A Physical, 2010, 163(1): 291-296.
LIU G J, SHEN C L, YANG Z G, et al.. A disposable piezoelectric micropump with high performance for closed-loop insulin therapy system[J]. Sensors and Actuators A Physical, 2010, 163(1): 291-296.
[17] ANIS Y, MELDRUM D. Static and transient response analysis of a piezoelectric actuator driven diaphragm pico-liter pump[C]. IEEE Ras & Embs International Conference on Biomedical Robotics and Biomechatronics, IEEE, 2012: 652-656.
ANIS Y, MELDRUM D. Static and transient response analysis of a piezoelectric actuator driven diaphragm pico-liter pump[C]. IEEE Ras & Embs International Conference on Biomedical Robotics and Biomechatronics, IEEE, 2012: 652-656.
[18] MA H K, CHEN R H, HSU Y H. Development of a piezoelectric-driven miniature pump for biomedical applications[J]. Sensors & Actuators A Physical, 2015, 234: 23-33.
MA H K, CHEN R H, HSU Y H. Development of a piezoelectric-driven miniature pump for biomedical applications[J]. Sensors & Actuators A Physical, 2015, 234: 23-33.
[19] WU Y, LIU Y, LIU J F, et al.. An improved resonantly driven piezoelectric gas pump[J]. Journal of Mechanical Science and Technology, 2012, 27(3): 793-798.
WU Y, LIU Y, LIU J F, et al.. An improved resonantly driven piezoelectric gas pump[J]. Journal of Mechanical Science and Technology, 2012, 27(3): 793-798.
[20] WANG J T, LIU Y, SHEN Y H, et al.. A resonant piezoelectric diaphragm pump transferring gas with compact structure. Micromachines, 2016, 7(12): 1-9.
WANG J T, LIU Y, SHEN Y H, et al.. A resonant piezoelectric diaphragm pump transferring gas with compact structure. Micromachines, 2016, 7(12): 1-9.