• Optics and Precision Engineering
  • Vol. 28, Issue 10, 2267 (2020)
WANG Jian-tao1,2,*, ZHAO Ding-xuan3, YANG Hao-ren3, CAI Shuai1, and ZHANG Qian-cheng1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.37188/ope.20202810.2267 Cite this Article
    WANG Jian-tao, ZHAO Ding-xuan, YANG Hao-ren, CAI Shuai, ZHANG Qian-cheng. Structure and performance of piezoelectric piston gas compressor with flexible drive[J]. Optics and Precision Engineering, 2020, 28(10): 2267 Copy Citation Text show less
    References

    [1] WANG Y N, FU L M. Micropumps and biomedical applications-A review[J]. Microelectronic Engineering, 2018, 195: 121-138.

         WANG Y N, FU L M. Micropumps and biomedical applications-A review[J]. Microelectronic Engineering, 2018, 195: 121-138.

    [2] CHEN S, WANG SH Y, XIE X Y, et al.. Practical rearch on computer chip water cooling system with combined piezoelectric pump unit[J]. Opt. Precision Eng., 2018, 26(5): 1140-1147. (in Chinese)

         CHEN S, WANG SH Y, XIE X Y, et al.. Practical rearch on computer chip water cooling system with combined piezoelectric pump unit[J]. Opt. Precision Eng., 2018, 26(5): 1140-1147. (in Chinese)

    [3] LIU B D, ZHANG ZH, LI D SH. Review on micro pump for microfluidics[J]. Journal of Beijing University of Technology, 2018, 44(6): 812-824. (in Chinese)

         LIU B D, ZHANG ZH, LI D SH. Review on micro pump for microfluidics[J]. Journal of Beijing University of Technology, 2018, 44(6): 812-824. (in Chinese)

    [4] ZHANG J H, WANG Y, HUANG J. Advances in valveless piezoelectric pump with cone-shaped tubes[J]. Chinese Journal of Mechanical Engineering, 2017, 30(4): 766-781.

         ZHANG J H, WANG Y, HUANG J. Advances in valveless piezoelectric pump with cone-shaped tubes[J]. Chinese Journal of Mechanical Engineering, 2017, 30(4): 766-781.

    [5] QIAN C P, CHEN S, WANG J T, et al.. A piezoelectric hydraulic linear motor with velocity self-monitoring[J]. Sensors and Actuators A Physical, 2020, 306.

         QIAN C P, CHEN S, WANG J T, et al.. A piezoelectric hydraulic linear motor with velocity self-monitoring[J]. Sensors and Actuators A Physical, 2020, 306.

    [6] DENKENA B, HLSEMEYER L, BERGMEIER M. Performance of a piezo-hydraulic fine positioning device: Experimental analyses with a scaled model[J]. Production Engineering, 2017, 11(4-5): 613-619.

         DENKENA B, HLSEMEYER L, BERGMEIER M. Performance of a piezo-hydraulic fine positioning device: Experimental analyses with a scaled model[J]. Production Engineering, 2017, 11(4-5): 613-619.

    [7] LU S, CHAI B, LIU Y, et al.. The experimental study on the influence factors in adhesive dispensing dot diameter of impact jetting valve[J]. IEEE Transactions on Components Packaging & Manufacturing Technology, 2016, 6(2): 1-5.

         LU S, CHAI B, LIU Y, et al.. The experimental study on the influence factors in adhesive dispensing dot diameter of impact jetting valve[J]. IEEE Transactions on Components Packaging & Manufacturing Technology, 2016, 6(2): 1-5.

    [8] GU SH D, YANG ZH G, JIANG H, et al.. Piezoelectric driven hydraulic amplification jetting system[J]. Opt. Precision Eng., 2015, 23(6): 1627-1634. (in Chinese)

         GU SH D, YANG ZH G, JIANG H, et al.. Piezoelectric driven hydraulic amplification jetting system[J]. Opt. Precision Eng., 2015, 23(6): 1627-1634. (in Chinese)

    [9] WANG J T, ZHAO X L, CHEN, X F, et al.. A piezoelectric resonance pump based on a flexible support. Micromachines, 2019, 10(3): 169.

         WANG J T, ZHAO X L, CHEN, X F, et al.. A piezoelectric resonance pump based on a flexible support. Micromachines, 2019, 10(3): 169.

    [10] ZHAO L Q, JI J. Principle and experimental verification of valve-less pump[J]. Opt. Precision Eng., 2019, 27(12): 2639-2649. (in Chinese)

         ZHAO L Q, JI J. Principle and experimental verification of valve-less pump[J]. Opt. Precision Eng., 2019, 27(12): 2639-2649. (in Chinese)

    [11] DAUA V T, DINH T X. Numerical study and experimental validation of a valveless piezoelectric air blower for fluidic applications[J]. Sensors & Actuators B Chemical, 2015, 221: 1077-1083.

         DAUA V T, DINH T X. Numerical study and experimental validation of a valveless piezoelectric air blower for fluidic applications[J]. Sensors & Actuators B Chemical, 2015, 221: 1077-1083.

    [12] LIU C, ZHU Y. Simulation and experimental study of direct spray type piezoelectric air pumps based on synthetic jet[J]. Microsystem Technologies, 2019, 25(12): 4445-4454.

         LIU C, ZHU Y. Simulation and experimental study of direct spray type piezoelectric air pumps based on synthetic jet[J]. Microsystem Technologies, 2019, 25(12): 4445-4454.

    [13] WADA Y, KOYAMA D, NAKAMURA K. Acoustic streaming in an ultrasonic air pump with three-dimensional finite-difference time-domain analysis and comparison to the measurement [J]. Ultrasonics, 2014, 54(8): 2119-2125.

         WADA Y, KOYAMA D, NAKAMURA K. Acoustic streaming in an ultrasonic air pump with three-dimensional finite-difference time-domain analysis and comparison to the measurement [J]. Ultrasonics, 2014, 54(8): 2119-2125.

    [14] WANG J B, LIU G J, MA X, et al.. An integrated micro-mixer driven by valveless piezoelectric pump[J]. Journal of Xi'an Jiaotong University, 2018, 52(1): 92-99.(in Chinese)

         WANG J B, LIU G J, MA X, et al.. An integrated micro-mixer driven by valveless piezoelectric pump[J]. Journal of Xi'an Jiaotong University, 2018, 52(1): 92-99.(in Chinese)

    [15] NAM J, LI M, C S. Micromixing using swirling induced by three-dimensional dual surface acoustic waves (3D-dSAW)[J]. Sensors and Actuators B Chemical, 2018, 255(3): 3434-3440.

         NAM J, LI M, C S. Micromixing using swirling induced by three-dimensional dual surface acoustic waves (3D-dSAW)[J]. Sensors and Actuators B Chemical, 2018, 255(3): 3434-3440.

    [16] LIU G J, SHEN C L, YANG Z G, et al.. A disposable piezoelectric micropump with high performance for closed-loop insulin therapy system[J]. Sensors and Actuators A Physical, 2010, 163(1): 291-296.

         LIU G J, SHEN C L, YANG Z G, et al.. A disposable piezoelectric micropump with high performance for closed-loop insulin therapy system[J]. Sensors and Actuators A Physical, 2010, 163(1): 291-296.

    [17] ANIS Y, MELDRUM D. Static and transient response analysis of a piezoelectric actuator driven diaphragm pico-liter pump[C]. IEEE Ras & Embs International Conference on Biomedical Robotics and Biomechatronics, IEEE, 2012: 652-656.

         ANIS Y, MELDRUM D. Static and transient response analysis of a piezoelectric actuator driven diaphragm pico-liter pump[C]. IEEE Ras & Embs International Conference on Biomedical Robotics and Biomechatronics, IEEE, 2012: 652-656.

    [18] MA H K, CHEN R H, HSU Y H. Development of a piezoelectric-driven miniature pump for biomedical applications[J]. Sensors & Actuators A Physical, 2015, 234: 23-33.

         MA H K, CHEN R H, HSU Y H. Development of a piezoelectric-driven miniature pump for biomedical applications[J]. Sensors & Actuators A Physical, 2015, 234: 23-33.

    [19] WU Y, LIU Y, LIU J F, et al.. An improved resonantly driven piezoelectric gas pump[J]. Journal of Mechanical Science and Technology, 2012, 27(3): 793-798.

         WU Y, LIU Y, LIU J F, et al.. An improved resonantly driven piezoelectric gas pump[J]. Journal of Mechanical Science and Technology, 2012, 27(3): 793-798.

    [20] WANG J T, LIU Y, SHEN Y H, et al.. A resonant piezoelectric diaphragm pump transferring gas with compact structure. Micromachines, 2016, 7(12): 1-9.

         WANG J T, LIU Y, SHEN Y H, et al.. A resonant piezoelectric diaphragm pump transferring gas with compact structure. Micromachines, 2016, 7(12): 1-9.

    WANG Jian-tao, ZHAO Ding-xuan, YANG Hao-ren, CAI Shuai, ZHANG Qian-cheng. Structure and performance of piezoelectric piston gas compressor with flexible drive[J]. Optics and Precision Engineering, 2020, 28(10): 2267
    Download Citation