[4] ChengM K, NakashimaM A, MoisionB E, et al. Optimizations of a Turbo-like Decoder for Deep-space Optical Communications[J]. The Interplanetary Network Progress Report, 2007, 168(42):1-13.
[5] SrinivasanM, BirnbaumK, ChengM, et al. A Postprocessing Receiver for the Lunar Laser Communications Demonstration Project[C]//Proceedings of SPIE-The International Society for Optical Engineering, Free-Space Laser Communication and Atmospheric Propagation XXV. San Francisco, CA, USA: SPIE, 2013, 8610: 86100Q.
[6] HuS, MiL, ZhouT, et al. 35.88 Attenuation Lengths and 3.32 bits/photon Underwater Optical Wireless Communication based on Photon-counting Receiver with 256-PPM[J]. Optics Express, 2018, 26(17):21685-21699.
[7] WenG, HuangJ, DaiJ, et al. Performance Analysis Optimization and Experimental Verification of a Photon-counting Communication System based on Nonphoton-number-resolution Detectors[J]. Optics Communications, 2020, 468:125771-125778.
[8] SrinivasanM, RogalinR, LayN, et al. Downlink Receiver Algorithms for Deep Space Optical Communications[C]//Proceedings of SPIE-The International Society for Optical Engineering, Free-Space Laser Communication and Atmospheric Propagation XXIX. San Francisco, CA, USA: SPIE, 2017, 10096: 100960A.
[9] BirnbaumK, FarrW, GinJ, et al. Demonstration of a High-efficiency Free-space Optical Communications link[C]//Proceedings of SPIE-The International Society for Optical Engineering, Free-Space Laser Communication Technologies XXI. San Jose, CA, USA: SPIE, 2009, 7199: 71990A.
[10] MoisionB, HamkinsJ. Coded Modulation for the Deep-space Optical Channel:Serially Concatenated Pulse-position Modulation[J]. The Interplanetary Network Progress Report, 2005, 161(42):1-25.