• High Power Laser and Particle Beams
  • Vol. 34, Issue 3, 031012 (2022)
Chunyao Zhang, Xiaohui Zhao*, Yanqi Gao, Tao Wang, Tianxiong Zhang, Daxing Rao, Dong Liu, Yong Cui, Lailin Ji, Haitao Shi, Wei Feng, and Zhan Sui
Author Affiliations
  • Shanghai Institute of Laser Plasma, CAEP, Shanghai 201800, China
  • show less
    DOI: 10.11884/HPLPB202234.210267 Cite this Article
    Chunyao Zhang, Xiaohui Zhao, Yanqi Gao, Tao Wang, Tianxiong Zhang, Daxing Rao, Dong Liu, Yong Cui, Lailin Ji, Haitao Shi, Wei Feng, Zhan Sui. Near-infrared broadband low-temporal-coherence optical parametric amplification[J]. High Power Laser and Particle Beams, 2022, 34(3): 031012 Copy Citation Text show less
    References

    [1] Lindl J, Landen O, Edwards J, et al. Review of the National Ignition Campaign 2009-2012[J]. Physics of Plasmas, 21, 020501(2014).

    [2] Fujioka S, Takabe H, Yamamoto N, et al. X-ray astronomy in the laboratory with a miniature compact object produced by laser-driven implosion[J]. Nature Physics, 5, 821-825(2009).

    [3] Weber S, Bechet S, Borneis S, et al. P3: An installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-Beamlines[J]. Matter and Radiation at Extremes, 2, 149-176(2017).

    [4] Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 11, 339-491(2004).

    [5] Bergh R A, Culshaw B, Cutler C C, et al. Source statistics and the Kerr effect in fiber-optic gyroscopes[J]. Optics Letters, 7, 563-565(1982).

    [6] Bouma B E, Tearney G J. Hbook of optical coherence tomography[M]. New Yk: Marcel Dekker, 2002: 6.

    [7] Picozzi A, Aschieri P. Influence of dispersion on the resonant interaction between three incoherent waves[J]. Physical Review E, 72, 046606(2005).

    [8] Picozzi A, Montes C, Haelterman M. Coherence properties of the parametric three-wave interaction driven from an incoherent pump[J]. Physical Review E, 66, 056605(2002).

    [9] Dorrer C, Hill E M, Zuegel J D, et al. High-energy parametric amplification of spectrally incoherent broadband pulses[J]. Optics Express, 28, 451-471(2020).

    [10] Dorrer C. Statistical analysis of incoherent pulse shaping[J]. Optics Express, 17, 3341-3352(2009).

    [11] Ji Lailin, Zhao Xiaohui, Liu Dong, et al. High-efficiency second-harmonic generation of low-temporal-coherent light pulse[J]. Optics Letters, 44, 4359-4362(2019).

    [12] Arisholm G. Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators[J]. Journal of the Optical Society of America B, 16, 117-127(1999).

    [13] Wang Yanhai. Engineering design research on OPCPA f the front end of picosecondpetawattclass lasers[D]. Shanghai: Shanghai Institute of Optics Fine Mechanics, Chinese Academy of Sciences, 2009

    [14] Hopf F A, Stegeman G I. Applied classical electrodynamics[M]. New Yk: Wiley, 1986.

    [15] Wang Hongying. Experimental studies of optical parametric chirped pulse amplification[D]. Xi’an: Xi''an Institute of Optics Precision Mechanics, Chinese Academy of Sciences, 2008

    Chunyao Zhang, Xiaohui Zhao, Yanqi Gao, Tao Wang, Tianxiong Zhang, Daxing Rao, Dong Liu, Yong Cui, Lailin Ji, Haitao Shi, Wei Feng, Zhan Sui. Near-infrared broadband low-temporal-coherence optical parametric amplification[J]. High Power Laser and Particle Beams, 2022, 34(3): 031012
    Download Citation