[1] L LIU, J A GARDECKI, S K NADKARNI et al. Imaging the subcellular structure of human coronary atherosclerosis using 1-μm resolution optical coherence tomography (uOCT). Nature Medicine, 17, 1010-1014(2013).
[2] R LEITGEB, C HITZENBERGER, A FERCHER. Performance of fourier domain vs. time domain optical coherence tomography. Optics Express, 11, 889-894(2003).
[3] R J BLANCH, J A MICIELI, N M OYESIKU et al. Optical coherence tomography retinal ganglion cell complex analysis for the detection of early chiasmal compression. Pituitary, 21, 515-523(2018).
[4] M C PIERCE, J STRASSWIMMER, B H PARKet a1. Advances in optical coherence tomography imaging for dermatology. Invest Dermatol, 123, 458-463(2004).
[5] Xiupin WU, Wanrong GAO, Yunxu ZHANG et al. New method for non-destructive quantitative measurement of subsurface damage within glass. Chinese Journal of Lasers, 44, 163-170(2017).
[6] Changming WANG, Wanrong GAO. Measurement of scattering coefficient of glass subsurface defects based on micron SDOCT. Acta Optica Sinica, 41, 0729001(2021).
[7] J F D BOER, C K HITZENBERGER, Y YASUNO. Polarization sensitive optical coherence tomography - a review [Invited]. Biomedical Optics Express, 8, 1838-1873(2017).
[8] Z DING, C P LIANG, Y CHEN. Technology developments and biomedical applications of polarization-sensitive optical coherence tomography. Frontiers of Optoelectronics, 8, 128-140(2015).
[9] B H PARK, C SAXER, S M SRINIVAS et al. In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography. Journal of Biomedical Optics, 6, 474-479(2001).
[10] F TETSCHKE, J GOLDE, J WALTHER et al. Visualization of interfacial adhesive defects at dental restorations with spectral domain and polarization sensitive optical coherence tomography. Current Directions in Biomedical Engineering, 4, 559-562(2018).
[11] S NANDY, T L HELLAND, B W ROOP et al. Rapid non-destructive volumetric tumor yield assessment in fresh lung core needle biopsies using polarization sensitive optical coherence tomography. Biomedical Optics Express, 12, 5597-5613(2021).
[12] H JIANG, W CHEN, S DELGADO et al. Altered birefringence of peripapillary retinal nerve fiber layer in multiple sclerosis measured by polarization sensitive optical coherence tomography. Eye and Vision, 5, 1-7(2018).
[13] D Y CUI, X Y LIU, J ZHANG et al. Dual spectrometer system with spectral compounding for 1-μm optical coherence tomography in vivo. Optics Letters, 39, 6727-6730(2014).
[14] Q Z XIONG, N S WANG, X Y LIU et al. Single input state polarization-sensitive optical coherence tomography with high resolution and polarization distortion correction. Optics Express, 27, 6910-6924(2019).
[15] C L CHEN, W S SHI, Z Y QIU et al. B-scan-sectioned dynamic micro-optical coherence tomography for bulk-motion suppression. Chinese Optics Letter, 20, 1-6(2022).
[16] B Y TAN, Z HOSSEINAEE, L HAN et al. 250 kHz, 1.5 µm resolution SD-OCT for in-vivo cellular imaging of the human cornea. Biomedical Optics Express, 9, 6569-6583(2018).
[17] W DREXLER, U MORGNER, F X KARTNER et al. In vivo ultrahigh-resolution optical coherence tomography. Optics Letters, 24, 1221-1223(1999).
[18] A LIN, R K WANG. In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography. Optics Express, 16, 11438-11452(2008).
[19] L M SIMOHAMED, J L AUGUSTE, J RIOUBLANC et al. Analysis of chromatic dispersion variation in optical fiber under large stretching. Optical Fiber Technology, 5, 403-411(1999).
[20] W K NIBLACK, J O SCHENK, B LIU et al. Dispersion in a grating-based optical delay line for optical coherence tomography. Applied Optics, 42, 4115-4118(2003).
[21] D L MARKS, A L OLDENBURG, J J REYNOLDS et al. Autofocus algorithm for dispersion correction in optical coherence tomography. Applied Optics, 42, 3038-3046(2003).
[22] M WOJTKOWSKI, V J SRINIVASAN, T H KO et al. Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Optics Express, 12, 2404-2422(2004).
[23] K BANASZEK, A S RADUNSKY, I A WALMSLEY. Blind dispersion compensation for optical coherence tomography. Optics Communications, 269, 152-155(2007).
[24] S W LEE, H W JEONG, B M KIM. High-speed spectral domain polarization-sensitive optical coherence tomography using a single camera and an optical switch at 1.3μm. Journal of Biomedical Optics, 15, 1-3(2009).
[25] Y W HE, Z F LI, Y ZHANG et al. Single camera spectral domain polarization-sensitive optical coherence tomography based on orthogonal channels by time divided detection. Optics Communications, 403, 162-165(2017).
[26] Youwu HE, Zhifang LI, Ying ZHANG et al. Single camera spectral domain polarization-sensitive optical coherence tomography using an optical switch. Journal of Optoelectronics Laser, 28, 1067-1071(2017).
[27] B BAUMANN, E GOTZINGER, M PIRCHER et al. Single camera based spectral domain polarization sensitive optical coherence tomography. Optics Express, 15, 1054-1063(2007).
[28] B CENSE, M MUJAT, T C CHEN et al. Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera. Optics Express, 15, 2421-2431(2007).
[29] C SONG, M AHN, D GWEON. Polarization-sensitive spectral-domain optical coherence tomography using a multi-line single camera spectrometer. Optics Express, 18, 23805-23817(2010).
[30] H LIU, W Y GAO, X P WU et al. All single-mode fiber-based polarization-sensitive spectral domain optical coherence tomography system. Journal of Physics Communications, 3, 015014(2019).
[31] T WU, K CAO, X WANG et al. Single input state, single mode fiber based spectral domain polarization sensitive optical coherence tomography using a single linear-in-wavenumber spectral camera. Optics and Lasers in Engineering, 127, 105948(2020).
[32] B CENSE, N A NASSIF, T CHEN et al. Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Optics Express, 12, 2435-2447(2004).
[33] D YANG, M HU, M ZHANG et al. High-resolution polarization-sensitive optical coherence tomography for zebrafish muscle imaging. Biomedical Optics Express, 11, 5618-5632(2020).
[34] C FAN, G YAO. Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography. Optics Letters, 37, 1415-1417(2012).
[35] J BOER, T E MILNER, M GEMERT et al. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Optics Letters, 22, 934-936(1997).