• Advanced Photonics
  • Vol. 4, Issue 2, 025001 (2022)
Xin Ge Zhang1, Ya Lun Sun1, Bingcheng Zhu2、3, Wei Xiang Jiang1、3、4、*, Zaichen Zhang2、3, and Tie Jun Cui1、*
Author Affiliations
  • 1Southeast University, School of Information Science and Engineering, State Key Laboratory of Millimeter Waves, Nanjing, China
  • 2Southeast University, School of Information Science and Engineering, National Mobile Communications Research Laboratory, Nanjing, China
  • 3Purple Mountain Laboratories, Nanjing, China
  • 4Southeast University, Frontiers Science Center for Mobile Information Communication and Security, Nanjing, China
  • show less
    DOI: 10.1117/1.AP.4.2.025001 Cite this Article Set citation alerts
    Xin Ge Zhang, Ya Lun Sun, Bingcheng Zhu, Wei Xiang Jiang, Zaichen Zhang, Tie Jun Cui. Light-controllable time-domain digital coding metasurfaces[J]. Advanced Photonics, 2022, 4(2): 025001 Copy Citation Text show less
    References

    [1] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [2] T. J. Cui et al. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl., 3, e218(2014).

    [3] X. G. Zhang et al. Polarization-controlled dual-programmable metasurfaces. Adv. Sci., 7, 1903382(2020).

    [4] T. J. Cui. Microwave metamaterials. Natl. Sci. Rev., 5, 134-136(2018).

    [5] Z. Li et al. Metasurfaces for bioelectronics and healthcare. Nat. Electron., 4, 382-391(2021).

    [6] R. Zhao, L. Huang, Y. Wang. Recent advances in multi-dimensional metasurfaces holographic technologies. PhotoniX, 4, 20(2020).

    [7] S. Zahra et al. Electromagnetic metasurfaces and reconfigurable metasurfaces: a review. Front. Phys., 8, 593411(2021).

    [8] H.-X. Xu et al. Spin-encoded wavelength-direction multitasking Janus metasurfaces. Adv. Opt. Mater., 9, 2100190(2021).

    [9] J. Li et al. Terahertz wavefront shaping with multi-channel polarization conversion based on all-dielectric metasurface. Photonics Res., 9, 1939-1947(2021).

    [10] S. J. Li et al. Programmable controls to scattering properties of a radiation array. Laser Photonics Rev., 15, 2000449(2021).

    [11] A. M. Shaltout, V. M. Shalaev, M. L. Brongersma. Spatiotemporal light control with active metasurfaces. Science, 364, eaat3100(2019).

    [12] X. G. Zhang et al. Smart Doppler cloak operating in broad band and full polarizations. Adv. Mater., 33, 2007966(2021).

    [13] Z. N. Wu, A. Grbic. Serrodyne frequency translation using time-modulated metasurfaces. IEEE Trans. Antennas Propag., 68, 1599-1606(2020).

    [14] J. Y. Dai et al. Wireless communication based on information metasurfaces. IEEE Trans. Microw. Theory Technol., 69, 1493-1510(2021).

    [15] T. J. Cui et al. Information metamaterial systems. iScience, 23, 101403(2020).

    [16] T. J. Cui, S. Liu, L. Zhang. Information metamaterials and metasurfaces. J. Mater. Chem. C, 5, 3644-3668(2017).

    [17] J. Zhao et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems. Natl. Sci. Rev., 6, 231-238(2019).

    [18] M. Liu, A. B. Kozyrev, I. V. Shadrivov. Time-varying metasurfaces for broadband spectral camouflage. Phys. Rev. Appl., 12, 054052(2019).

    [19] J. C. Ke et al. Linear and nonlinear polarization syntheses and their programmable controls based on anisotropic time-domain digital coding metasurface. Small Struct., 2, 2000060(2021).

    [20] J. Yang et al. Simultaneous conversion of polarization and frequency via time-division-multiplexing metasurfaces. Adv. Opt. Mater., 9, 2101043(2021).

    [21] J. Y. Dai et al. Realization of multi-modulation schemes for wireless communication by time-domain digital coding metasurface. IEEE Trans. Antennas Propag., 68, 1618-1627(2020).

    [22] H. Rajabalipanah, A. Abdolali, K. Rouhi. Reprogrammable spatiotemporally modulated graphene-based functional metasurfaces. IEEE J. Emerging Sel. Top. Circuits Syst., 10, 75-87(2020).

    [23] J. Y. Dai et al. Arbitrary manipulations of dual harmonics and their wave behaviors based on space-time-coding digital metasurface. Appl. Phys. Rev., 7, 041408(2020).

    [24] L. Zhang et al. Space-time-coding digital metasurfaces. Nat. Commun., 9, 4334(2018).

    [25] I. F. da Costa et al. Optically controlled reconfigurable antenna array for mm-wave applications. IEEE Antennas Wireless Propag. Lett., 16, 2142-2145(2017).

    [26] Y. Tawk et al. Optically pumped frequency reconfigurable antenna design. IEEE Antennas Wireless Propag. Lett., 9, 280-283(2010).

    [27] W. X. Jiang et al. An optically controllable transformation-dc illusion device. Adv. Mater., 27, 4628-4633(2015).

    [28] X. G. Zhang et al. An optically driven digital metasurface for programming electromagnetic functions. Nat. Electron., 3, 165-171(2020).

    [29] X. G. Zhang et al. Light-controllable digital coding metasurfaces. Adv. Sci., 5, 1801028(2018).

    [30] X. G. Zhang, W. X. Jiang, T. J. Cui. Frequency-dependent transmission-type digital coding metasurface controlled by light intensity. Appl. Phys. Lett., 113, 091601(2018).

    [31] R. Li et al. Light-controlled metasurface with a controllable range of reflection phase modulation. J. Phys. D Appl. Phys., 55, 225302(2022).

    [32] Y. L. Sun et al. Infrared-controlled programmable metasurface. Sci. Bull., 65, 883-888(2020).

    [33] Q. Yu et al. Self-adaptive metasurface platform based on computer vision. Opt. Lett., 46, 3520-3523(2021).

    [34] J. Y. Dai et al. Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface. Light Sci. Appl., 7, 90(2018).

    Xin Ge Zhang, Ya Lun Sun, Bingcheng Zhu, Wei Xiang Jiang, Zaichen Zhang, Tie Jun Cui. Light-controllable time-domain digital coding metasurfaces[J]. Advanced Photonics, 2022, 4(2): 025001
    Download Citation