• Acta Physica Sinica
  • Vol. 69, Issue 8, 083401-1 (2020)
Wen-Li Zhao1, Yong-Gang Wang1, Lu-Lu Zhang2, Da-Guang Yue2, and Qing-Tian Meng3、*
Author Affiliations
  • 1School of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
  • 2School of Science, Shandong Jiaotong University, Jinan 250357, China
  • 3School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
  • show less
    DOI: 10.7498/aps.69.20200132 Cite this Article
    Wen-Li Zhao, Yong-Gang Wang, Lu-Lu Zhang, Da-Guang Yue, Qing-Tian Meng. Wave packet quantum dynamics of ${\bf{C}}{(^3}{\bf{P}}) + {{\bf{H}}_2}({{\bf{X}}^1} \Sigma _{\bf{g}}^ + ) $$ \to {\bf{H}}{(^2}{\bf{S}}) + {\bf{CH}}{(^2} \Pi ) $ reaction based on new CH2( ${\tilde {\bf X}{}^3}\bf A''$) surface [J]. Acta Physica Sinica, 2020, 69(8): 083401-1 Copy Citation Text show less
    Equipotential contour plot for CH2, the contour increments are 0.1 eV: (a) For bond stretching in C-H-H linear geometry; (b) for T-shaped insertion of C into H2 diatoms.
    Fig. 1. Equipotential contour plot for CH2, the contour increments are 0.1 eV: (a) For bond stretching in C-H-H linear geometry; (b) for T-shaped insertion of C into H2 diatoms.
    The minimum energy paths as a function of RCH-RHH at 90° and 180°.
    Fig. 2. The minimum energy paths as a function of RCH-RHH at 90° and 180°.
    The reaction probabilities vs. collision energy at different J.
    Fig. 3. The reaction probabilities vs. collision energy at different J.
    Comparisons between the CC and CS probability.
    Fig. 4. Comparisons between the CC and CS probability.
    The integral cross section of the C+H2 reaction.
    Fig. 5. The integral cross section of the C+H2 reaction.
    The rate constant of the C+H2 reaction.
    Fig. 6. The rate constant of the C+H2 reaction.
    坐标取值范围 和基组数 $R \in ({10^{{\rm{ - }}16}}, \, 16)$, $({N_R} = 203)$
    $r \in (0.5, \, 12)$, $({N_r} = 99)$
    $\gamma \in ({90^ \circ }, \, {180^ \circ })$, $({N_\gamma } = 50)$
    吸收势${R_{\rm{d}}} = 11.0$, ${d_R} = 0.0006$
    ${r_{\rm{d}}} = 7.5$, ${d_r} = 0.001$
    初始波包${R_0} = 8.0$, ${E_0} = 1.55\;{\rm{ eV}}$, $\delta = 0.3$
    光谱控制0.5
    流计算的位置${r_{\rm{f}}} = 7.4$
    传播步数100000
    Table 1.

    Parameters used in wave packet calculation (The atomic unit is used in the calculation unless otherwise stated).

    波包计算中的数值参量(除特殊说明, 均采用原子单位a.u.)

    Wen-Li Zhao, Yong-Gang Wang, Lu-Lu Zhang, Da-Guang Yue, Qing-Tian Meng. Wave packet quantum dynamics of ${\bf{C}}{(^3}{\bf{P}}) + {{\bf{H}}_2}({{\bf{X}}^1} \Sigma _{\bf{g}}^ + ) $$ \to {\bf{H}}{(^2}{\bf{S}}) + {\bf{CH}}{(^2} \Pi ) $ reaction based on new CH2( ${\tilde {\bf X}{}^3}\bf A''$) surface [J]. Acta Physica Sinica, 2020, 69(8): 083401-1
    Download Citation