• Matter and Radiation at Extremes
  • Vol. 6, Issue 2, 025901 (2021)
Meifang Liu1, Xing Ai1, Yiyang Liu1, Qiang Chen1, Shuai Zhang1, Zhibing He1, Yawen Huang2, and Qiang Yin1、a)
Author Affiliations
  • 1Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, China
  • 2State Key Laboratory of Envronment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, China
  • show less
    DOI: 10.1063/5.0033103 Cite this Article
    Meifang Liu, Xing Ai, Yiyang Liu, Qiang Chen, Shuai Zhang, Zhibing He, Yawen Huang, Qiang Yin. Fabrication of solid CH-CD multilayer microspheres for inertial confinement fusion[J]. Matter and Radiation at Extremes, 2021, 6(2): 025901 Copy Citation Text show less
    References

    [1] O. A. Hurricane, D. A. Callahan, D. T. Caseyspc et al. Fuel gain exceeding unity in an inertially confined fusion implosion. Nature, 506, 343-348(2014).

    [2] M. E. Glinsky, M. Tabak, J. Hammer et al. Ignition and high gain with ultrapowerful lasers. Phys. Plasmas, 1, 1626-1634(1994).

    [3] C. D. Zhou, R. Betti, K. S. Anderson et al. Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett., 98, 155001(2007).

    [4] J. Liu, G. Ren, J. Yan et al. Neutron generation by laser-driven spherically convergent plasma fusion. Phys. Rev. Lett., 118, 165001(2017).

    [5] D. L. Wilcox, M. Berg. Microsphere fabrication and applications: An overview. MRS Proc., 372, 3(1994).

    [6] C. Lattaud, L. Guillot, C.-H. Brachais et al. Influence of a density mismatch on TMPTMA shells nonconcentricity. J. Appl. Polym. Sci., 124, 4882-4888(2012).

    [7] A. V. Pastukhov, V. A. Davankov, A. A. Akunets et al. Hollow poly(alpha-methylstyrene) shells for inertial confinement fusion targets. J. Phys.: Conf. Ser., 907, 012020(2017).

    [8] W. Sweet, D. R. Harding, M. J. Bonino et al. Properties of vapor-deposited and solution-processed targets for laser-driven inertial confinement fusion experiments. Matter Radiat. Extremes, 3, 312-321(2018).

    [9] J. Biener, D. D. Ho, C. Wild et al. Diamond spheres for inertial confinement fusion. Nucl. Fusion, 49, 112001(2009).

    [10] S.-z. Wu, H.-b. Cai, X. T. He et al. Physical studies of fast ignition in China. Plasma Phys. Controlled Fusion, 57, 064003(2015).

    [11] K. Ishii, Y. Nishimura, Y. Mori et al. 1-Hz Bead-Pellet injection system for fusion reaction engaged by a laser HAMA using ultra-intense counter beams. Fusion Sci. Technol., 75, 36-48(2019).

    [12] H. B. Cai, W. S. Zhang, L. Q. Shan et al. Experimental evidence of kinetic effects in indirect-drive inertial confinement fusion hohlraums. Phys. Rev. Lett., 120, 195001(2018).

    [13] W. T. Kan, X. L. Xiong, R. Hu et al. Preparation of a deuterated polymer: Simulating to produce a solid tritium radioactive source. J. Nucl. Mater., 492, 171-177(2017).

    [14] M. Takagi, T. Norimatsu, T. Yamanaka et al. Development of deuterated polystyrene shells for laser fusion by means of a density-matched emulsion method. J. Vac. Sci. Technol., A, 9, 2145-2148(1991).

    [15] K. Nagai, T. Norimatsu, H. Yang et al. Fabrication of aerogel capsule, bromine-doped capsule, and modified gold cone in modified target for the fast ignition realization experiment (FIREX) project. Nucl. Fusion, 49, 095028(2009).

    [16] M. F. Liu, S. F. Chen, Y. W. Huang et al. Progress and challenges in the fabrication of DPS shells for ICF. Matter Radiat. Extremes, 4, 018401(2019).

    [17] M. F. Liu, Y. Q. Zheng, Q. Chen et al. Controllable production of deuterated polymer beads for ICF. J. Nucl. Mater., 535, 152159(2020).

    [18] X. B. Qi, S. F. Chen, M. F. Liu et al. Improvement of wall thickness uniformity of thick-walled polystyrene shells by density matching. Chem. Eng. J., 241, 466-476(2014).

    [19] M. Takagi, R. Cook, R. Stephens et al. Decreasing out-of-round in poly(a-methystyrene)mandrels by increasing interfacial tension. Fusion technology, 38, 46-49(2000).

    [20] R. Paguio, S. Bhandarkar, F. Elsner et al. Understanding the critical parameters of the PAMS mandrel fabrication process. Fusion Sci. Technol., 70, 127-136(2016).

    [21] F. Zhang, W. M. Zhou, H. B. Cai et al. Enhanced energy coupling for indirect-drive fast-ignition fusion targets. Nat. Phys., 16, 810-814(2020).

    [22] H. B. Cai, Z. Q. Yuan, L. Q. Shan et al. Study of the kinetic effects in indirect-drive inertial confinement fusion hohlraums. High Energy Density Phys., 36, 100756(2020).

    [23] Y. W. Huang, X. N. Wei, M. F. Liu et al.

    [24] A. Nikroo, R. C. Cook.

    [25] D. J. Plazek, K. L. Ngai. Physical Properties of Polymers Handbook(2007).

    [26] L. Lurio, A. Rühm, H. Kim et al. Surface tension and surface roughness of supported polystyrene films. Macromolecules, 36, 5704-5709(2003).

    [27] M. Liu, Y. Huang, L. Ye et al. Effects of molecular weight on thermal degradation of poly(α-methyl styrene) in nitrogen. J. Macromol. Sci., Part B., 54, 1479-1494(2015).

    [28] Z. B. He, H. Liu, J. J. Wei et al. Chemical structure and mechanical properties of glow discharge polymer films and deuterated glow discharge polymer films. High Power Laser Particle Beams, 27, 032028(2015).

    [29] X.-S. He, J.-L. Huang, X. Ai et al. The effect of axial ion parameters on the properties of glow discharge polymer in T2B/H2 plasma. J. Phys. D: Appl. Phys., 51, 095604(2018).

    [30] S. T. Milner, J. E. G. Lipson. Multiple glass transitions and local composition effects on polymer solvent mixtures. J. Polym. Sci., Part B, 44, 3528-3545(2006).

    [31] J. Swenson, R. Bergman, H. Jansson. Role of solvent for the dynamics and the glass transition of proteins. J. Phys. Chem. B, 115, 4099-4109(2011).

    [32] M. Theobald, C. Chicanne, J. Barnouin et al. Gas etching to obtain germanium doped CHx microshells compatible with the laser megajoule target specifications. Fusion Sci. Technol., 49, 757-763(2006).

    Meifang Liu, Xing Ai, Yiyang Liu, Qiang Chen, Shuai Zhang, Zhibing He, Yawen Huang, Qiang Yin. Fabrication of solid CH-CD multilayer microspheres for inertial confinement fusion[J]. Matter and Radiation at Extremes, 2021, 6(2): 025901
    Download Citation