• Advanced Photonics Nexus
  • Vol. 2, Issue 6, 066008 (2023)
Raana Sabri and Hossein Mosallaei*
Author Affiliations
  • Northeastern University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
  • show less
    DOI: 10.1117/1.APN.2.6.066008 Cite this Article Set citation alerts
    Raana Sabri, Hossein Mosallaei, "High-quality-factor space–time metasurface for free-space power isolation at near-infrared regime," Adv. Photon. Nexus 2, 066008 (2023) Copy Citation Text show less
    References

    [1] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [2] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 13, 139-150(2014).

    [3] A. M. Wong, G. V. Eleftheriades. Perfect anomalous reflection with a bipartite Huygens’ metasurface. Phys. Rev. X, 8, 011036(2018).

    [4] M. Decker et al. High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater., 3, 813-820(2015).

    [5] S. Divitt et al. Ultrafast optical pulse shaping using dielectric metasurfaces. Science, 364, 890-894(2019).

    [6] P. C. Wu et al. Broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface. Adv. Opt. Mater., 5, 1600938(2017).

    [7] R. Sabri, A. Forouzmand, H. Mosallaei. Genetically optimized dual-wavelength all-dielectric metasurface based on double-layer epsilon-near-zero indium-tin-oxide films. J. Appl. Phys., 128, 223101(2020).

    [8] W. T. Chen et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 13, 220-226(2018).

    [9] A. Pors et al. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett., 13, 829-834(2013).

    [10] A. M. Shaltout, V. M. Shalaev, M. L. Brongersma. Spatiotemporal light control with active metasurfaces. Science, 364, eaat3100(2019).

    [11] T. Cui, B. Bai, H.-B. Sun. Tunable metasurfaces based on active materials. Adv. Funct. Mater., 29, 1806692(2019).

    [12] P. Thureja et al. Toward a universal metasurface for optical imaging, communication, and computation. Nanophotonics, 11, 3745-3768(2022).

    [13] M. Elsawy et al. Universal active metasurfaces for ultimate wavefront molding by manipulating the reflection singularities. Laser Photonics Rev., 17, 2200880(2022).

    [14] T. Lewi, N. A. Butakov, J. A. Schuller. Thermal tuning capabilities of semiconductor metasurface resonators. Nanophotonics, 8, 331-338(2018).

    [15] S.-Y. Lee et al. Thermal actuated solid tunable lens. IEEE Photonics Technol. Lett., 18, 2191-2193(2006).

    [16] M. Rahmani et al. Reversible thermal tuning of all-dielectric metasurfaces. Adv. Funct. Mater., 27, 1700580(2017).

    [17] G. Cocorullo, F. Della Corte, I. Rendina. Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 k at the wavelength of 1523 nm. Appl. Phys. Lett., 74, 3338-3340(1999).

    [18] E. Arbabi et al. MEMS-tunable dielectric metasurface lens. Nat. Commun., 9, 812(2018).

    [19] M. R. Shcherbakov et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nat. Commun., 8, 17(2017).

    [20] P. C. Wu et al. Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces. Nat. Commun., 10, 3654(2019).

    [21] H. Chung et al. Electrical phase modulation based on mid-infrared intersubband polaritonic metasurfaces. Adv. Sci., 10, 2207520(2023).

    [22] C. H. Chu et al. Active dielectric metasurface based on phase-change medium. Laser Photonics Rev., 10, 986-994(2016).

    [23] S.-Q. Li et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science, 364, 1087-1090(2019).

    [24] A. L. Holsteen, A. F. Cihan, M. L. Brongersma. Temporal color mixing and dynamic beam shaping with silicon metasurfaces. Science, 365, 257-260(2019).

    [25] M. M. Salary, S. Farazi, H. Mosallaei. A dynamically modulated all-dielectric metasurface doublet for directional harmonic generation and manipulation in transmission. Adv. Opt. Mater., 7, 1900843(2019).

    [26] G. K. Shirmanesh et al. Electro-optically tunable multifunctional metasurfaces. ACS Nano, 14, 6912-6920(2020).

    [27] R. Sokhoyan et al. Electrically tunable conducting oxide metasurfaces for high power applications. Nanophotonics, 12, 239-253(2023).

    [28] A. Forouzmand et al. Tunable all-dielectric metasurface for phase modulation of the reflected and transmitted light via permittivity tuning of indium tin oxide. Nanophotonics, 8, 415-427(2019).

    [29] R. Sabri, A. Forouzmand, H. Mosallaei. Multi-wavelength voltage-coded metasurface based on indium tin oxide: independently and dynamically controllable near-infrared multi-channels. Opt. Express, 28, 3464-3481(2020).

    [30] S. Vatani, H. Taleb, M. K. Moravvej-Farshi. Optical modulation via guided-mode resonance in an ITO-loaded distributed Bragg reflector topped with a two-dimensional grating. IEEE J. Sel. Top. Quantum Electron., 27, 1-7(2021).

    [31] J. Park et al. Dynamic thermal emission control with INAS-based plasmonic metasurfaces. Sci. Adv., 4, eaat3163(2018).

    [32] R. Sabri, H. Mosallaei. Inverse design of perimeter-controlled INAS-assisted metasurface for two-dimensional dynamic beam steering. Nanophotonics, 11, 4515-4530(2022).

    [33] P. Ni et al. Gate-tunable emission of exciton–plasmon polaritons in hybrid MoS2-gap-mode metasurfaces. ACS Photonics, 6, 1594-1601(2019). https://doi.org/10.1021/acsphotonics.9b00433

    [34] M. Li et al. Excitonic beam steering in an active van der Waals metasurface(2022).

    [35] A. Forouzmand, H. Mosallaei. A tunable semiconductor-based transmissive metasurface: dynamic phase control with high transmission level. Laser Photonics Rev., 14, 1900353(2020).

    [36] G. Kafaie Shirmanesh et al. Dual-gated active metasurface at 1550 nm with wide (>300°) phase tunability. Nano Lett., 18, 2957-2963(2018).

    [37] J. Park et al. Dynamic reflection phase and polarization control in metasurfaces. Nano Lett., 17, 407-413(2017).

    [38] R. Sabri, M. M. Salary, H. Mosallaei. Single sideband suppressed carrier modulation with spatiotemporal metasurfaces at near-infrared spectral regime. J. Lightwave Technol., 40, 3802-3813(2022).

    [39] J. Park et al. An over-coupled phase-change metasurface for efficient reflection phase modulation. Adv. Opt. Mater., 8, 2000745(2020).

    [40] M. M. Salary, H. Mosallaei. Tunable all-dielectric metasurfaces for phase-only modulation of transmitted light based on quasi-bound states in the continuum. ACS Photonics, 7, 1813-1829(2020).

    [41] Y. Horie et al. High-speed, phase-dominant spatial light modulation with silicon-based active resonant antennas. ACS Photonics, 5, 1711-1717(2017).

    [42] Y. Akahane et al. High-q photonic nanocavity in a two-dimensional photonic crystal. Nature, 425, 944-947(2003).

    [43] L. Huang et al. Pushing the limit of high-q mode of a single dielectric nanocavity. Adv. Photonics, 3, 016004(2021).

    [44] E. Klopfer et al. Dynamic focusing with high-quality-factor metalenses. Nano Lett., 20, 5127-5132(2020).

    [45] M. Taghavi, H. Mosallaei. Increasing the stability margins using multi-pattern metasails and multi-modal laser beams. Sci. Rep., 12, 20034(2022).

    [46] V. Mylnikov et al. Lasing action in single subwavelength particles supporting supercavity modes. ACS Nano, 14, 7338-7346(2020).

    [47] R. Berté et al. Permittivity-asymmetric quasi-bound states in the continuum. Nano Lett., 23, 2651-2658(2023).

    [48] C. U. Hail et al. High quality factor metasurfaces for two-dimensional wavefront manipulation(2022).

    [49] S. Taravati, G. V. Eleftheriades. Full-duplex nonreciprocal beam steering by time-modulated phase-gradient metasurfaces. Phys. Rev. Appl., 14, 014027(2020).

    [50] M. M. Salary, S. Jafar-Zanjani, H. Mosallaei. Nonreciprocal optical links based on time-modulated nanoantenna arrays: full-duplex communication. Phys. Rev. B, 99, 045416(2019).

    [51] Y. Hadad, D. L. Sounas, A. Alu. Space-time gradient metasurfaces. Phys. Rev. B, 92, 100304(2015).

    [52] Y. Shi, S. Han, S. Fan. Optical circulation and isolation based on indirect photonic transitions of guided resonance modes. ACS Photonics, 4, 1639-1645(2017).

    [53] X. Guo et al. Nonreciprocal metasurface with space–time phase modulation. Light Sci. Appl., 8, 123(2019).

    [54] D. L. Sounas, C. Caloz, A. Alu. Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials. Nat. Commun., 4, 2407(2013).

    [55] M. M. S. Shahrbabaki. Space-time photonic metamaterials(2020).

    [56] Y. Shi, Z. Yu, S. Fan. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photonics, 9, 388-392(2015).

    [57] D. Jalas et al. What is—and what is not—an optical isolator. Nat. Photonics, 7, 579-582(2013).

    [58] Z. Wang et al. Gyrotropic response in the absence of a bias field. Proc. Natl. Acad. Sci., U. S. A., 109, 13194-13197(2012).

    [59] G. Lavigne, T. Kodera, C. Caloz. Metasurface magnetless specular isolator. Sci. Rep., 12, 5652(2022).

    [60] Y. Hadad et al. Extreme and quantized magneto-optics with graphene meta-atoms and metasurfaces. ACS Photonics, 1, 1068-1073(2014).

    [61] J. W. Zang et al. Nonreciprocal wavefront engineering with time-modulated gradient metasurfaces. Phys. Rev. Appl., 11, 054054(2019).

    [62] M. Bourkov et al. Time-modulated patch antennas with nonreciprocal polarization handedness, 745-746(2020).

    [63] V. Chistyakov et al. Tunable magnetless optical isolation with twisted Weyl semimetals(2023).

    [64] A. Howes et al. Dynamic transmission control based on all-dielectric Huygens metasurfaces. Optica, 5, 787-792(2018).

    [65] E. Tiguntseva et al. Room-temperature lasing from Mie-resonant nonplasmonic nanoparticles. ACS Nano, 14, 8149-8156(2020).

    [66] I. H. Malitson. Interspecimen comparison of the refractive index of fused silica. JOSA, 55, 1205-1209(1965).

    [67] R. Soref, B. Bennett. Electrooptical effects in silicon. IEEE J. Quantum Electron., 23, 123-129(1987).

    [68] D. Hohlfeld, H. Zappe. An all-dielectric tunable optical filter based on the thermo-optic effect. J. Opt. A Pure Appl. Opt., 6, 504(2004).

    [69] Y. Horie et al. Active dielectric antenna for phase only spatial light modulation, 1-2(2016).

    [70] M. H. MacDougal et al. Design and fabrication of VCSELS with al/sub x/o/sub y/-GAAS DBRS. IEEE J. Sel. Top. Quantum Electron., 3, 905-915(1997).

    [71] H. Lira et al. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett., 109, 033901(2012).

    [72] S. Inampudi et al. Rigorous space-time coupled-wave analysis for patterned surfaces with temporal permittivity modulation. Opt. Mater. Express, 9, 162-182(2019).

    [73] A. Forouzmand, H. Mosallaei. Electro-optical amplitude and phase modulators based on tunable guided-mode resonance effect. ACS Photonics, 6, 2860-2869(2019).

    [74] E. Klopfer et al. High-quality-factor silicon-on-lithium niobate metasurfaces for electro-optically reconfigurable wavefront shaping. Nano Lett., 22, 1703-1709(2022).

    [75] R. Sokhoyan et al. All-dielectric high-q dynamically tunable transmissive metasurfaces(2023).

    [76] E. A. Gurvitz et al. The high-order toroidal moments and anapole states in all-dielectric photonics. Laser Photonics Rev., 13, 1800266(2019).

    [77] A. Hassanfiroozi et al. Toroidal-assisted generalized Huygens’ sources for highly transmissive plasmonic metasurfaces. Laser Photonics Rev., 16, 2100525(2022).

    [78] A. Hassanfiroozi et al. Vertically-stacked discrete plasmonic meta-gratings for broadband space-variant metasurfaces. Adv. Opt. Mater., 11, 2202717(2023).

    [79] R. Alaee, C. Rockstuhl, I. Fernandez-Corbaton. An electromagnetic multipole expansion beyond the long-wavelength approximation. Opt. Commun., 407, 17-21(2018).

    [80] P. D. Terekhov et al. Multipole analysis of dielectric metasurfaces composed of nonspherical nanoparticles and lattice invisibility effect. Phys. Rev. B, 99, 045424(2019).

    [81] M. H. Pfeiffer et al. Ultra-smooth silicon nitride waveguides based on the damascene reflow process: fabrication and loss origins. Optica, 5, 884-892(2018).

    [82] Y. Takahashi et al. High-q nanocavity with a 2-ns photon lifetime. Opt. Express, 15, 17206-17213(2007).

    [83] R. Sabri, M. M. Salary, H. Mosallaei. Broadband continuous beam-steering with time-modulated metasurfaces in the near-infrared spectral regime. APL Photonics, 6, 086109(2021).

    [84] R. Sabri, M. M. Salary, H. Mosallaei. Quasi-static and time-modulated optical phased arrays: beamforming analysis and comparative study. Adv. Photonics Res., 2, 2100034(2021).

    [85] K. Y. Lee et al. Multiple PN junction subwavelength gratings for transmission-mode electro-optic modulators. Sci. Rep., 7, 46508(2017).

    [86] M. Nedeljkovic, R. Soref, G. Z. Mashanovich. Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1-14-μm infrared wavelength range. IEEE Photonics J., 3, 1171-1180(2011).

    [87] D. Ramaccia et al. Electromagnetic isolation induced by time-varying metasurfaces: nonreciprocal Bragg grating. IEEE Antenn. Wirel. Propag. Lett., 19, 1886-1890(2020).

    [88] P. Thureja et al. Space-time modulated metasurfaces for steering of frequency-shifted beams, FTu4D.5(2023).

    [89] P. D. Terekhov et al. Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges. Phys. Rev. B, 96, 035443(2017).

    [90] A. B. Evlyukhin, B. N. Chichkov. Multipole decompositions for directional light scattering. Phys. Rev. B, 100, 125415(2019).

    [91] (2023).

    Raana Sabri, Hossein Mosallaei, "High-quality-factor space–time metasurface for free-space power isolation at near-infrared regime," Adv. Photon. Nexus 2, 066008 (2023)
    Download Citation