• Chinese Journal of Lasers
  • Vol. 39, Issue 1, 111002 (2012)
Zhang Yuping*, Zhang Xiao, Liu Lingyu, Zhang Hongyan, Gao Ying, Xu Shilin, and Zhang Huiyun
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/cjl201239.0111002 Cite this Article Set citation alerts
    Zhang Yuping, Zhang Xiao, Liu Lingyu, Zhang Hongyan, Gao Ying, Xu Shilin, Zhang Huiyun. Theoretical Research of Terahertz Negative Dynamic Conductivity in Optically Pumped Graphene[J]. Chinese Journal of Lasers, 2012, 39(1): 111002 Copy Citation Text show less

    Abstract

    Due to the gapless energy spectrum and carriers relaxation characteristics, graphene causes a widespread concern in amplification of terahertz coherent sources. We consider the contribution of both interband and intraband transitions to the conductivity, and study the dynamic conductivity characteristics of a nonequilibium two-dimensional electron-hole system in optically pumped single and multiple graphene layer (SGL and MGL) structures. The results demonstrate that the population inversion in graphene can lead to a negative dynamic conductivity in the terahertz range of frequencies at sufficiently strong pumping, and the phenomenon might be used in graphene-based terahertz coherent sources radiation and amplification. Meanwhile, by studying the dependences of the negative conductivity on momentum relaxation time, temperature, number of layers, and optical intensity, it is found that the minimum absolute value of the real part of conductivity in MGL structures is greater than that in SGL structures. Thus, the MGL structures have more advantages to be the active medium of terahertz laser.
    Zhang Yuping, Zhang Xiao, Liu Lingyu, Zhang Hongyan, Gao Ying, Xu Shilin, Zhang Huiyun. Theoretical Research of Terahertz Negative Dynamic Conductivity in Optically Pumped Graphene[J]. Chinese Journal of Lasers, 2012, 39(1): 111002
    Download Citation