• Frontiers of Optoelectronics
  • Vol. 7, Issue 3, 293 (2014)
Lai WANG*, Wenbin LV, Zhibiao HAO, and Yi LUO
Author Affiliations
  • Tsinghua National Laboratory for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.1007/s12200-014-0425-3 Cite this Article
    Lai WANG, Wenbin LV, Zhibiao HAO, Yi LUO. Recent progresses on InGaN quantum dot light-emitting diodes[J]. Frontiers of Optoelectronics, 2014, 7(3): 293 Copy Citation Text show less
    References

    [1] Taguchi T. Present status of energy saving technologies and future prospect in white LED lighting. IEEJ Transactions on Electrical and Electronic Engineering, 2008, 3(1): 21–26

    [2] Wang Q, Wang T, Bai J, Cullis A G, Parbrook P J, Ranalli F. Influence of annealing temperature on optical properties of InGaN quantum dot based light emitting diodes. Applied Physics Letters, 2008, 93(8): 081915-1–081915-3

    [3] Jarjour A F, Taylor R A, Oliver R A, Kappers M J, Humphreys C J, Tahraoui A. Cavity-enhanced blue single-photon emission from a single InGaN∕GaN quantum dot. Applied Physics Letters, 2007, 91(5): 052101-1–052101-3

    [4] Detchprohm T, Zhu M W, Li Y F, Zhao L, You S, Wetzel C, Preble E A, Paskova T, Hanser D. Wavelength-stable cyan and green light emitting diodes on nonpolar m-plane GaN bulk substrates. Applied Physics Letters, 2010, 96(5): 051101-1–051101-3

    [5] Detchprohm T, Zhu M W, Li Y F, Xia Y, Wetzel C, Preble E A, Liu L H, Paskova T, Hanser D. Green light emitting diodes on a-plane GaN bulk substrates. Applied Physics Letters, 2008, 92(24): 241109-1–241109-3

    [6] Lin Y D, Chakraborty A, Brinkley S, Kuo H C, Melo T, Fujito K, Speck J S, DenBaars S P, Nakamura S. Characterization of bluegreen m-plane InGaN light emitting diodes. Applied Physics Letters, 2009, 94(26): 261108-1–261108-3

    [7] Funato M, Ueda M, Kawakami Y, Narukawa Y, Kosugi T, Takahashi M, Mukai T. Blue, green, and amber InGaN/GaN lightemitting diodes on semipolar {11-22} GaN bulk substrates. Japanese Journal of Applied Physics, 2006, 45(7L): L659

    [8] Sato H, Tyagi A, Zhong H, Fellows N, Chung R B, Saito M, Fujito K, Speck J S, DenBaars S P, Nakamura S. High power and high efficiency green light emitting diode on free-standing semipolar (112) bulk GaN substrate. Physica Status Solidi. Rapid Research Letters, 2007, 1(4): 162–164

    [9] Yamamoto S, Zhao Y J, Pan C C, Chung R B, Fujito K, Sonoda J, DenBaars S P, Nakamura S. High-efficiency single-quantum-well green and yellow-green light-emitting diodes on semipolar (20)GaN substrates. Applied Physics Express, 2010, 3(12): 122102

    [10] Feezell D F, Schmidt M C, DenBaars S P, Nakamura S. Development of nonpolar and semipolar InGaN/GaN visible lightemitting diodes. MRS Bulletin, 2009, 34(5): 318–323

    [11] Young E C, Wu F, Romanov A E, Tyagi A, Gallinat C S, DenBaars S P, Nakamura S, Speck J S. Lattice tilt and misfit dislocations in (11) semipolar GaN heteroepitaxy. Applied Physics Express, 2010, 3(1): 11004-1–11004-4

    [12] Craven M D, Lim S H, Wu F, Speck J S, DenBaars S P. Threading dislocation reduction via laterally overgrown nonpolar (1120) aplane GaN. Applied Physics Letters, 2002, 81(7): 1201–1203

    [13] Masui H, Nakamura S, DenBaars S P, Mishra U K, Ieee T. Nonpolar and semipolar III-nitride light-emitting diodes: achievements and challenges. IEEE Transactions on Electron Devices, 2010, 57(1): 88–100

    [14] Zhao W, Wang L, Wang J X, Hao Z B A, Luo Y. Theoretical study on critical thicknesses of InGaN grown on (0001) GaN. Journal of Crystal Growth, 2011, 327(1): 202–204

    [15] People R, Bean J C. Calculation of critical layer thickness versus lattice mismatch for GexSi1 – x/Si strained-layer heterostructures. Applied Physics Letters, 1985, 47(3): 322–324

    [16] Nakajima K. Equilibrium phase diagrams for Stranski-Krastanov structure mode of III–V ternary quantum dots. Japanese Journal of Applied Physics, 1999, 38(4R): 1875

    [17] Zhao W, Wang L, Lv W B, Wang L, Wang J X, Hao Z B, Luo Y. Growth behavior of high-indium-composition InGaN quantum dots using growth interruption method. Japanese Journal of Applied Physics, 2011, 50(6R): 065601

    [18] Yao H H, Lu T C, Huang G S, Chen C Y, Liang W D, Kuo H C, Wang S C. InGaN self-assembled quantum dots grown by metal–organic chemical vapour deposition with growth interruption. Nanotechnology, 2006, 17(6): 1713–1716

    [19] Ji L W, Su Y K, Chang S J, Wu L W, Fang T H, Chen J F, Tsai T Y, Xue Q K, Chen S C. Growth of nanoscale InGaN self-assembled quantum dots. Journal of Crystal Growth, 2003, 249(1–2): 144–148

    [20] Ee Y K, Zhao H P, Arif R A, Jamil M, Tansu N. Self-assembled InGaN quantum dots on GaN emitting at 520 nm grown by metalorganic vapor-phase epitaxy. Journal of Crystal Growth, 2008, 310(7–9): 2320–2325

    [21] Bayram C, Razeghi M. Density-controlled growth and field emission property of aligned ZnO nanorod arrays. Applied Physics A, 2009, 97(2): 403–408

    [22] Ji L W, Su Y K, Chang S J,Wu L W, Fang T H, Xue Q K, Lai WC, Chiou Y Z. A novel method to realize InGaN self-assembled quantum dots by metalorganic chemical vapor deposition. Materials Letters, 2003, 57(26–27): 4218–4221

    [23] Wang Q,Wang T, Parbrook P J, Bai J, Cullis A G. The influence of a capping layer on optical properties of self-assembled InGaN quantum dots. Journal of Applied Physics, 2007, 101(11): 113520-1–113520-7

    [24] Wang Q,Wang T, Bai J, Cullis A G, Parbrook P J, Ranalli F. Growth and optical investigation of self-assembled InGaN quantum dots on a GaN surface using a high temperature AlN buffer. Journal of Applied Physics, 2008, 103(12): 123522-1–123522-4

    [25] Bai J, Wang Q, Wang T, Cullis A G, Parbrook P J. Optical and microstructural study of a single layer of InGaN quantum dots. Journal of Applied Physics, 2009, 105(5): 53505-1–53502-5

    [26] Lv W B, Wang L, Wang J X, Xing Y C, Zheng J Y, Yang D, Hao Z B, Luo Y. Green and red light-emitting diodes based on multilayer InGaN/GaN dots grown by growth interruption method. Japanese Journal of Applied Physics, 2013, 52(8S): 08JG13-1–08JG13-2

    [27] Wang L, Zhao W, Lv WB,Wang L, Hao Z B, Luo Y. The influence of underlying layer on morphology of InGaN quantum dots selfassembled by metal organic vapor phase epitaxy. Physica Status Solidi C, 2012, 9(3–4): 782–785

    [28] Lv W B, Wang L, Wang J, Hao Z, Luo Y. Density increase of upper quantum dots in dual InGaN quantum-dot layers. Chinese Physics Letters, 2011, 28(12): 128101-1–128101-3

    [29] Lv W B, Wang L, Wang J, Hao Z, Luo Y. InGaN/GaN multilayer quantum dots yellow-green light-emitting diode with optimized GaN barriers. Nanoscale Research Letters, 2012, 7(1): 617–624

    [30] Lv W B, Wang L, Wang L, Xing Y C, Yang D, Hao Z B, Luo Y. InGaN quantum dot green light-emitting diodes with negligible blue shift of electroluminescence peak wavelength. Applied Physics Express, 2014, 7(2): 025203

    Lai WANG, Wenbin LV, Zhibiao HAO, Yi LUO. Recent progresses on InGaN quantum dot light-emitting diodes[J]. Frontiers of Optoelectronics, 2014, 7(3): 293
    Download Citation