• NUCLEAR TECHNIQUES
  • Vol. 45, Issue 12, 120601 (2022)
Qingfeng YANG1, Zhexiao XIE2, Ping CHEN1, Jing ZHANG2, Shixin GAO1, Guochen DING2, Yi ZHOU1, Chunyu YIN1, Shurong DING2、*, Liang HE1, and Dan SUN1
Author Affiliations
  • 1Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610213, China
  • 2Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
  • show less
    DOI: 10.11889/j.0253-3219.2022.hjs.45.120601 Cite this Article
    Qingfeng YANG, Zhexiao XIE, Ping CHEN, Jing ZHANG, Shixin GAO, Guochen DING, Yi ZHOU, Chunyu YIN, Shurong DING, Liang HE, Dan SUN. Research on multi-scale creep behaviors of UN-U 3Si 2 composite fuels[J]. NUCLEAR TECHNIQUES, 2022, 45(12): 120601 Copy Citation Text show less
    References

    [1] ZHANG Xiang, LIU Guiliang, LIU Yunming et al. Study on fabrication and microstructural analysis of U3Si2 fuel pellets[J]. Nuclear Power Engineering, 40, 56-59(2019).

    [2] Wilson T L, Moore E E, Adorno Lopes D et al. Uranium nitride-silicide advanced nuclear fuel: higher efficiency and greater safety[J]. Advances in Applied Ceramics, 117, s76-s81(2018).

    [3] Ortega L H, Blamer B J, Evans J A et al. Development of an accident-tolerant fuel composite from uranium mononitride (UN) and uranium sesquisilicide (U3Si2) with increased uranium loading[J]. Journal of Nuclear Materials, 471, 116-121(2016).

    [4] Harp J M, Lessing P A, Hoggan R E. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation[J]. Journal of Nuclear Materials, 466, 728-738(2015).

    [5] Kaloni T P, Torres E. Thermal and mechanical properties of U3Si2: a combined ab-initio and molecular dynamics study[J]. Journal of Nuclear Materials, 533, 152090(2020).

    [6] White J T, Nelson A T, Dunwoody J T et al. Corrigendum to "Thermophysical properties of U3Si2 to 1773 K"[J]. Journal of Nuclear Materials, 484, 386-387(2016).

    [7] Vioujard N, Kliewer R, Delafoy C et al. Advanced fuel technologies of the future[C], 20-27(2019).

    [8] Wallenius J, Jolkkonen M, Mishchenko Y et al. Towards industrial-scale manufacture of UN fuel for water-cooled reactors[C], 1144-1146(2019).

    [9] LI Rui. Low temperature sintering technology to UO2 fuel pellets and its creep properties in high temperature[J]. Nuclear Power Engineering, 35, 97-100(2014).

    [10] Burton B, Reynolds G L, Barnes J P. The influence of grain size on the creep of uranium dioxide[J]. Journal of Materials Science, 8, 1690-1694(1973).

    [11] Zeisser P, Maraniello G, Merlini C. In-pile measurement of fission enhanced creep and swelling of uranium nitride[J]. Journal of Nuclear Materials, 65, 48-60(1977).

    [12] Hayes S L, Thomas J K, Peddicord K L. Material property correlations for uranium mononitride:II. mechanical properties[J]. Journal of Nuclear Materials, 171, 271-288(1990).

    [13] Brucklacher D, Dienst W. Creep behavior of ceramic nuclear fuels under neutron irradiation[J]. Journal of Nuclear Materials, 42, 285-296(1972).

    [14] Mercado E A C. High temperature compression creep of U3Si2[D](2018).

    [15] Freeman R A. Analysis of pellet-cladding mechanical interaction on U3Si2 fuel with a multi-layer SiC cladding using bison[D](2018).

    [16] Yingling J A, Gamble K A, Roberts E et al. Updated U3Si2 thermal creep model and sensitivity analysis of the U3Si2-SiC accident tolerant Fuel[J]. Journal of Nuclear Materials, 543, 152586(2021).

    [17] Metzger K. Analysis of pellet cladding interaction and creep of U3Si2 fuel for use in light water reactors[D](2016).

    [18] Finlay M R, Hofman G L, Snelgrove J L. Irradiation behaviour of uranium silicide compounds[J]. Journal of Nuclear Materials, 325, 118-128(2004).

    [19] Ross S B, El-Genk M S, Matthews R B. Uranium nitride fuel swelling correlation[J]. Journal of Nuclear Materials, 170, 169-177(1990).

    [20] Olander D R. Fundamental aspects of nuclear reactor fuel elements[R](1976).

    [21] Herring C. Diffusional viscosity of a polycrystalline solid[J]. Journal of Applied Physics, 21, 437-445(1950).

    [22] Weertman J. Steady-state creep of crystals[J]. Journal of Applied Physics, 28, 1185-1189(1957).

    [23] Weertman J. Steady-state creep through dislocation climb[J]. Journal of Applied Physics, 28, 362-364(1957).

    [24] Cooper M W D, Gamble K A, Capolungo L et al. Irradiation-enhanced diffusion and diffusion-limited creep in U3Si2[J]. Journal of Nuclear Materials, 555, 153129(2021).

    [25] Nakata K, Matsuda T, Kawai M. Multi-scale creep analysis of plain-woven laminates using time-dependent homogenization theory: effects of laminate configuration[J]. International Journal of Modern Physics B, 22, 6173-6178(2008).

    [26] Yu P, Duan Y H, Chen E et al. Microstructure-based homogenization method for early-age creep of cement paste[J]. Construction and Building Materials, 188, 1193-1206(2018).

    [27] Matsuda T, Fukuta Y. Multi-scale creep analysis of angle-ply CFRP laminates based on a homogenization theory[J]. Journal of Solid Mechanics and Materials Engineering, 4, 1664-1672(2010).

    [28] White J T, Travis A W, Dunwoody J T et al. Fabrication and thermophysical property characterization of UN/U3Si2 composite fuel forms[J]. Journal of Nuclear Materials, 495, 463-474(2017).

    [29] Zhang J Y, Ding S R. Mesoscale simulation research on the homogenized elasto-plastic behavior of FeCrAl alloy[J]. Materials Today Communications, 22, 100718(2020).

    Qingfeng YANG, Zhexiao XIE, Ping CHEN, Jing ZHANG, Shixin GAO, Guochen DING, Yi ZHOU, Chunyu YIN, Shurong DING, Liang HE, Dan SUN. Research on multi-scale creep behaviors of UN-U 3Si 2 composite fuels[J]. NUCLEAR TECHNIQUES, 2022, 45(12): 120601
    Download Citation