• Chinese Optics Letters
  • Vol. 22, Issue 11, 111901 (2024)
Lei Yan1, Qinyong He1, Ziyao Gong1, Yunqi Yang1..., Anping Ge2,3, Guohong Ma1, Ye Dai1, Liaoxin Sun2,3,* and Saifeng Zhang1,**|Show fewer author(s)
Author Affiliations
  • 1Department of Physics, Shanghai University, Shanghai 200444, China
  • 2State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/COL202422.111901 Cite this Article Set citation alerts
    Lei Yan, Qinyong He, Ziyao Gong, Yunqi Yang, Anping Ge, Guohong Ma, Ye Dai, Liaoxin Sun, Saifeng Zhang, "Ultrafast nonlinear optical absorption and carrier dynamics of CrPS4 thin films," Chin. Opt. Lett. 22, 111901 (2024) Copy Citation Text show less
    References

    [1] J. Son, S. Son, P. Park et al. Air-stable and layer-dependent ferromagnetism in atomically thin van der Waals CrPS4. ACS Nano, 15, 16904(2021).

    [2] K. X. Chen, J. C. Liu, Z. L. Huang et al. Manganese phosphorous trifulfide nanosheets and nitrogen doped carbon dot composites with manganese vacancies for a greatly enhanced hydrogen evolution. J. Colloid Interface Sci., 627, 438(2022).

    [3] B. Vedhanarayanan, C. C. Chiu, J. Regner et al. Highly exfoliated NiPS3 nanosheets as efficient electrocatalyst for high yield ammonia production. Chem. Eng. J., 430, 132649(2022).

    [4] J. Lee, T. Y. Ko, J. H. Kim et al. “Structural and optical properties of single-and few-layer magnetic semiconductor CrPS4. ACS Nano, 11, 10935(2017).

    [5] F. M. Wang, T. A. Shifa, P. Yu et al. New frontiers on van der Waals layered metal phosphorous trichalcogenides. Adv. Funct. Mater., 28, 1802151(2018).

    [6] D. Vaclavkova, M. Palit, J. Wyzula et al. “Magnon polarons in the van der Waals antiferromagnet FePS3. Phys. Rev. B, 104, 134437(2021).

    [7] D. K. Li, Y. J. Xu, J. Guo et al. Nonlinear optical properties and photoexcited carrier dynamics of MnPS3 nanosheets. Opt. Express, 30, 36802(2022).

    [8] C. C. Mayorga-Martinez, Z. Sofer, D. Sedmidubsky et al. Layered metal thiophosphite materials: magnetic, electrochemical, and electronic properties. ACS Appl. Mater. Interfaces, 9, 12563(2017).

    [9] T. A. Shifa, F. M. Wang, Z. Z. Cheng et al. High crystal quality 2D manganese phosphorus trichalcogenide nanosheets and their photocatalytic activity. Adv. Funct. Mater., 28, 8(2018).

    [10] X. Z. Li, Y. Y. Fang, J. Wang et al. High-yield electrochemical production of large-sized and thinly layered NiPS3 flakes for overall water splitting. Small, 15, 1902427(2019).

    [11] J. Liu, Y. Wang, Y. Fang et al. A robust 2D photo-electrochemical detector based on NiPS3 flakes. Adv. Electron. Mater., 5, 1900726(2019).

    [12] Z. W. Ou, T. Wang, J. B. Tang et al. Enabling and controlling negative photoconductance of FePS3 nanosheets by hot carrier trapping. Adv. Opt. Mater., 8, 7(2020).

    [13] J. F. Liu, X. Z. Li, Y. J. Xu et al. NiPS3 nanoflakes: a nonlinear optical material for ultrafast photonics. Nanoscale, 11, 14383(2019).

    [14] J. Chen, J. Wang, Q. Yu et al. Sub-band gap absorption and optical nonlinear response of MnPSe3 nanosheets for pulse generation in the L-band. ACS Appl. Mater. Interfaces, 13, 13524(2021).

    [15] A. Louisy, G. Ouvrard, D. Schleich et al. Physical properties and lithium intercalates of CrPS4. Solid State Commun., 28, 61(1978).

    [16] R. Diehl, C.-D. Carpentier. The crystal structure of chromium thiophosphate, CrPS4. Acta Crystallogr. B, 33, 1399(1977).

    [17] Q. Pei, X. Luo, G. Lin et al. Spin dynamics, electronic, and thermal transport properties of two-dimensional CrPS4 single crystal. J. Appl. Phys., 119, 043902(2016).

    [18] H. Zhang, Y. Li, X. Hu et al. In-plane anisotropic 2D CrPS4 for promising polarization-sensitive photodetection. Appl. Phys. Lett., 119, 171102(2021).

    [19] R. A. Susilo, B. G. Jang, J. Feng et al. Band gap crossover and insulator–metal transition in the compressed layered CrPS4. npj Quantum Mater., 5, 58(2020).

    [20] H. Wu, H. Chen. Probing the properties of lattice vibrations and surface electronic states in magnetic semiconductor CrPS4. RSC Adv., 9, 30655(2019).

    [21] S. Ding, Y. Peng, M. Xue et al. Magnetic phase diagram of CrPS4 and its exchange interaction in contact with NiFe. J. Phys. Condens. Matter, 32, 405804(2020).

    [22] R. Li, N. Dong, C. Cheng et al. Giant enhancement of nonlinear optical response in Nd: YAG single crystals by embedded silver nanoparticles. ACS Omega, 2, 1279(2017).

    [23] R. Li, N. Dong, F. Ren et al. Nonlinear absorption response correlated to embedded Ag nanoparticles in BGO single crystal: from two-photon to three-photon absorption. Sci. Rep., 8, 1977(2018).

    [24] L. Wang, S. Zhang, N. McEvoy et al. Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2. Laser Photonics Rev., 13, 1900052(2019).

    [25] Z. Wang, N. Dong, Y. Mao et al. Microscopic nonlinear optical activities and ultrafast carrier dynamics in layered AgInP2S6. Photonics Res., 12, 691(2024).

    [26] M. Sheik-Bahae, A. A. Said, T.-H. Wei et al. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron., 26, 760(1990).

    [27] S. M. Kirkpatrick, R. R. Naik, M. O. Stone. Nonlinear saturation and determination of the two-photon absorption cross section of green fluorescent protein. J. Phys. Chem. B, 105, 2867(2001).

    [28] X. Meng, Y. Zhou, K. Chen et al. Anisotropic saturable and excited-state absorption in bulk ReS2. Adv. Opt. Mater., 6, 1800137(2018).

    [29] S. Zhang, X. Zhang, H. Wang et al. Size-dependent saturable absorption and mode-locking of dispersed black phosphorus nanosheets. Opt. Mater. Express, 6, 3159(2016).

    [30] D. Sun, Y. Rao, G. A. Reider et al. Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide. Nano Lett., 14, 5625(2014).

    [31] Y. Li, J. Shi, H. Chen et al. The Auger process in multilayer WSe2 crystals. Nanoscale, 10, 17585(2018).

    [32] Y. Li, Y. Chen, H. Zhou et al. Transient optical modulation of two-dimensional materials by excitons at ultimate proximity. ACS Nano, 15, 5495(2021).

    [33] C. Ye, Z. Yang, J. Dong et al. Layer-tunable nonlinear optical characteristics and photocarrier dynamics of 2D PdSe2 in broadband spectra. Small, 17, 2103938(2021).

    [34] K. Wang, B. M. Szydłowska, G. Wang et al. Ultrafast nonlinear excitation dynamics of black phosphorus nanosheets from visible to mid-infrared. ACS Nano, 10, 6923(2016).

    [35] G. Wang, D. Bennett, C. Zhang et al. Two-photon absorption in monolayer MXenes. Adv. Opt. Mater., 8, 1902021(2020).

    [36] L. Jia, C.-F. Huo, X.-Q. Yan et al. Ultrafast carrier dynamics in 2D NbTe2 films: implications for photonic and optoelectronic devices. ACS Appl. Nano Mater., 5, 17348(2022).

    [37] H. Shi, R. Yan, S. Bertolazzi et al. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano, 7, 1072(2013).

    [38] G. Wang, A. A. Baker-Murray, X. Zhang et al. Broadband saturable absorption and exciton-exciton annihilation in MoSe2 composite thin films. Opt. Mater. Express, 9, 483(2019).

    [39] G. Wang, K. Wang, N. McEvoy et al. Ultrafast carrier dynamics and bandgap renormalization in layered PtSe2. Small, 15, 1902728(2019).

    [40] Y. Li, J. Shi, Y. Mi et al. Ultrafast carrier dynamics in two-dimensional transition metal dichalcogenides. J. Mater. Chem. C, 7, 4304(2019).

    [41] E. Colin-Ulloa, A. Fitzgerald, K. Montazeri et al. Ultrafast spectroscopy of plasmons and free carriers in 2D MXenes. Adv. Mater., 35, 2208659(2023).

    [42] C. Giannetti, M. Capone, D. Fausti et al. Ultrafast optical spectroscopy of strongly correlated materials and high-temperature superconductors: a non-equilibrium approach. Adv. Phys., 65, 58(2016).

    [43] Y. Tian, W. Zhang, F. Li et al. Ultrafast dynamics evidence of high temperature superconductivity in single unit cell FeSe on SrTiO3. Phys. Rev. Lett., 116, 107001(2016).

    [44] W. Lu, Z. Yang, J. Hao et al. Terahertz relaxation dynamics of a two-dimensional InSe multilayer. Phys. Rev. B, 102, 014314(2020).

    [45] Z. Tian, Q. Zhang, Y. Xiao et al. Ultraweak electron-phonon coupling strength in cubic boron arsenide unveiled by ultrafast dynamics. Phys. Rev. B, 105, 174306(2022).

    [46] S. Brorson, A. Kazeroonian, J. Moodera et al. Femtosecond room-temperature measurement of the electron-phonon coupling constant γ in metallic superconductors. Phys. Rev. Lett., 64, 2172(1990).

    [47] C. Gadermaier, A. Alexandrov, V. Kabanov et al. Electron-phonon coupling in high-temperature cuprate superconductors determined from electron relaxation rates. Phys. Rev. Lett., 105, 257001(2010).

    [48] W. Qiu, W. Liang, J. Guo et al. Thickness-dependent ultrafast hot carrier and phonon dynamics of PtSe2 films measured with femtosecond transient optical spectroscopy. J. Phys. D: Appl. Phys., 54, 075102(2020).

    [49] T. Cheiwchanchamnangij, W. R. Lambrecht. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B, 85, 205302(2012).

    [50] Y. Yang, D. P. Ostrowski, R. M. France et al. Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nat. Photonics, 10, 53(2016).

    [51] J. Fu, Q. Xu, G. Han et al. Hot carrier cooling mechanisms in halide perovskites. Nat. Commun., 8, 1300(2017).

    [52] C. Zhong, V. K. Sangwan, J. Kang et al. Hot carrier and surface recombination dynamics in layered InSe crystals. J. Phys. Chem. Lett., 10, 493(2019).

    [53] P. Gu, Q. Tan, Y. Wan et al. Photoluminescent quantum interference in a van der Waals magnet preserved by symmetry breaking. ACS Nano, 14, 1003(2019).

    [54] S. Kim, J. Lee, G. Jin et al. Crossover between photochemical and photothermal oxidations of atomically thin magnetic semiconductor CrPS4. Nano Lett., 19, 4043(2019).

    Lei Yan, Qinyong He, Ziyao Gong, Yunqi Yang, Anping Ge, Guohong Ma, Ye Dai, Liaoxin Sun, Saifeng Zhang, "Ultrafast nonlinear optical absorption and carrier dynamics of CrPS4 thin films," Chin. Opt. Lett. 22, 111901 (2024)
    Download Citation