• Photonics Research
  • Vol. 12, Issue 11, 2726 (2024)
Tushar Sarkar1,3, Jiapeng Cai1, Xiang Peng1, and Wenqi He1,2,*
Author Affiliations
  • 1Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 2Shenzhen Key Laboratory of Intelligent Optical Measurement and Detection, Shenzhen University, Shenzhen 518060, China
  • 3e-mail: tusharsarkar.sarkar@gmail.com
  • show less
    DOI: 10.1364/PRJ.538320 Cite this Article Set citation alerts
    Tushar Sarkar, Jiapeng Cai, Xiang Peng, Wenqi He, "Measuring the OAM spectrum of a fractional helical beam in a single shot," Photonics Res. 12, 2726 (2024) Copy Citation Text show less
    References

    [1] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [2] V. V. Kotlyar, A. A. Kovalev, A. P. Porfirev. Vortex Laser Beams(2018).

    [3] L. Allen, S. M. Barnett, M. J. Padgett. Orbital Angular Momentum(2003).

    [4] Y. Shen, X. Wang, Z. Xie. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 8, 90(2019).

    [5] A. E. Willner, H. Huang, Y. Yan. Optical communication using orbital angular momentum beams. Adv. Opt. Photon., 7, 66-106(2015).

    [6] J. Ng, Z. Lin, C. T. Chan. Theory of optical trapping by an optical vortex beam. Phys. Rev. Lett., 104, 103601(2010).

    [7] W. S. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994).

    [8] S. Liu, Y. Lou, J. Jing. Orbital angular momentum multiplexed deterministic all-optical quantum teleportation. Nat. Commun., 11, 3875(2020).

    [9] X. Fang, H. Ren, M. Gu. Orbital angular momentum holography for high-security encryption. Nat. Photonics, 14, 102-108(2020).

    [10] M. V. Berry. Optical vortices evolving from helicoidal integer and fractional phase steps. J. Opt. A, 6, 259-268(2004).

    [11] V. V. Kotlyar, A. A. Kovalev, A. G. Nalimov. Evolution of an optical vortex with an initial fractional topological charge. Phys. Rev. A, 102, 023516(2020).

    [12] G. Gbur. Fractional vortex Hilbert’s hotel. Optica, 3, 222-225(2016).

    [13] H. Zhang, J. Zeng, X. Lu. Review on fractional vortex beam. Nanophotonics, 11, 241-273(2022).

    [14] S. H. Tao, X. C. Yuan, J. Lin. Fractional optical vortex beam induced rotation of particles. Opt. Express, 13, 7726-7731(2005).

    [15] R. Dasgupta, S. Ahlawat, R. S. Verma. Optical orientation and rotation of trapped red blood cells with Laguerre-Gaussian mode. Opt. Express, 19, 7680-7688(2011).

    [16] A. E. Willner, Z. Zhao, C. Liu. Perspectives on advances in high-capacity, free-space communications using multiplexing of orbital-angular-momentum beams. APL Photon., 6, 030901(2021).

    [17] F. Cao, C. Xie. Direct experimental evidence for free-space fractional optical vortex transmutation. Appl. Opt., 61, 4518-4526(2022).

    [18] J. A. Davis, D. E. McNamara, D. M. Cottrell. Image processing with the radial Hilbert transform: theory and experiments. Opt. Lett., 25, 99-101(2000).

    [19] L. Chen, J. Lei, J. Romero. Quantum digital spiral imaging. Light Sci. Appl., 3, e153(2014).

    [20] Q. K. Wang, F. X. Wang, J. Liu. High-dimensional quantum cryptography with hybrid orbital-angular-momentum states through 25 km of ring-core fiber: a proof-of-concept demonstration. Phys. Rev. Appl., 15, 064034(2021).

    [21] S. S. R. Oemrawsingh, X. Ma, D. Voigt. Experimental demonstration of fractional orbital angular momentum entanglement of two photons. Phys. Rev. Lett., 95, 240501(2005).

    [22] X. Z. Li, Y. P. Tai, F. J. Lv. Measuring the fractional topological charge of LG beams by using interference intensity analysis. Opt. Commun., 334, 235-239(2015).

    [23] H. C. Huang, Y. T. Lin, M. F. Shih. Measuring the fractional orbital angular momentum of a vortex light beam by cascaded Mach-Zehnder interferometers. Opt. Commun., 285, 383-388(2012).

    [24] A. Shikder, N. K. Nishchal. Measurement of the fractional topological charge of an optical vortex beam through interference fringe dislocation. Appl. Opt., 62, D58-D67(2023).

    [25] S. N. Alperin, R. D. Niederriter, J. T. Gopinath. Quantitative measurement of the orbital angular momentum of light with a single, stationary lens. Opt. Lett., 41, 5019-5022(2016).

    [26] J. Courtial, M. J. Padgett. Performance of a cylindrical lens mode converter for producing Laguerre–Gaussian laser modes. Opt. Commun., 159, 13-18(1999).

    [27] S. M. A. Hosseini-Saber, E. A. Akhlaghi, A. Saber. Diffractometry-based vortex beams fractional topological charge measurement. Opt. Lett., 45, 3478-3481(2020).

    [28] N. Daryabi, S. G. Sabouri. Intersecting of circular apertures to measure integer and fractional topological charge of vortex beams. Opt. Express, 31, 28459-28469(2023).

    [29] J. Zhu, P. Zhang, D. Fu. Probing the fractional topological charge of a vortex light beam by using dynamic angular double slits. Photon. Res., 4, 187-190(2016).

    [30] A. Shikder, J. B. Mohapatra, N. K. Nishchal. Fractional topological charge measurement through optical correlation. Opt. Lett., 49, 2017-2020(2024).

    [31] Z. Liu, S. Yan, H. Liu. Superhigh-resolution recognition of optical vortex modes assisted by a deep-learning method. Phys. Rev. Lett., 123, 183902(2019).

    [32] D. Deng, M. Lin, Y. Li. Precision measurement of fractional orbital angular momentum. Phys. Rev. Appl., 12, 014048(2019).

    [33] D. Deng, Y. Chu, Y. Liu. Measurement of multiplexed fractional vortices with integer mode interval. Results Phys., 29, 104699(2021).

    [34] J. Guan, N. Liu, C. Chen. Non-iterative dartboard phase filter for achieving multifocal arrays by cylindrical vector beams. Opt. Express, 26, 24075-24088(2018).

    [35] Y. Feng, R. Wang, C. Liu. Non-iterative phase-only modulation method for generating high-uniformity 3D multifocal spots with flexible position control. Opt. Commun., 547, 129812(2023).

    [36] Z. Lin, J. Hu, Y. Chen. Single-shot Kramers–Kronig complex orbital angular momentum spectrum retrieval. Adv. Photon., 5, 036006(2023).

    [37] A. D’Errico, R. D’Amelio, B. Piccirillo. Measuring the complex orbital angular momentum spectrum and spatial mode decomposition of structured light beams. Optica, 4, 1350-1357(2017).

    [38] I. V. Basistiy, M. S. Soskin, M. V. Vasnetsov. Optical wave-front dislocations and their properties. Opt. Commun., 119, 604-612(1995).

    [39] T. Tahara, T. Kanno, Y. Arai. Single-shot phase-shifting incoherent digital holography. J. Opt., 19, 065705(2017).

    [40] I. Yamaguchi, T. Zhang. Phase-shifting digital holography. Opt. Lett., 22, 1268-1270(1997).

    [41] T. Sarkar, R. Parvin, M. M. Brundavanam. Higher-order Stokes-parameter correlation to restore the twisted wave front propagating through a scattering medium. Phys. Rev. A, 104, 013525(2021).

    [42] G. Molina-Terriza, J. P. Torres, L. Torner. Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Phys. Rev. Lett., 88, 013601(2001).