• Chinese Journal of Lasers
  • Vol. 49, Issue 19, 1910001 (2022)
Jing Jin, Tiezhi Li, Xiaowei Wang*, Shen Tan..., Zhiyu Guo and Ningfang Song|Show fewer author(s)
Author Affiliations
  • School of Instrument Science and Opto-Electronics Engineering, Beihang University, Beijing 100191, China
  • show less
    DOI: 10.3788/CJL202249.1910001 Cite this Article Set citation alerts
    Jing Jin, Tiezhi Li, Xiaowei Wang, Shen Tan, Zhiyu Guo, Ningfang Song. Fiber Optic Gyroscopes for Space Applications[J]. Chinese Journal of Lasers, 2022, 49(19): 1910001 Copy Citation Text show less
    Diagram of single axis IFOG
    Fig. 1. Diagram of single axis IFOG
    Configuration of six-independent-axis IFOG
    Fig. 2. Configuration of six-independent-axis IFOG
    Configuration of four-axis IFOG with two sharing light sources
    Fig. 3. Configuration of four-axis IFOG with two sharing light sources
    Flow chart of IFOG fault diagnosis
    Fig. 4. Flow chart of IFOG fault diagnosis
    Configuration of 3-axis IFOGs with further miniaturization. (a) Miniature 3-axis IFOG; (b) 3-axis IFOG based on TDM technology
    Fig. 5. Configuration of 3-axis IFOGs with further miniaturization. (a) Miniature 3-axis IFOG; (b) 3-axis IFOG based on TDM technology
    Miniaturized components. (a) PIN-FET; (b) small-diameter PMF; (c) mini fiber coils
    Fig. 6. Miniaturized components. (a) PIN-FET; (b) small-diameter PMF; (c) mini fiber coils
    PM-PCF. (a) Cross section; (b) PM-PCF coil
    Fig. 7. PM-PCF. (a) Cross section; (b) PM-PCF coil
    RIA of PM-PCF at different wavelengths
    Fig. 8. RIA of PM-PCF at different wavelengths
    Results of bias drift and noise test for the IFOGs. (a) Miniature four-axis IFOG; (b) miniature three-axis IFOG;(c) PM-PCF IFOG
    Fig. 9. Results of bias drift and noise test for the IFOGs. (a) Miniature four-axis IFOG; (b) miniature three-axis IFOG;(c) PM-PCF IFOG
    ComponentFailure modesFailure rates /(10-6 h-1)
    SourceRadiation damage, overheating, and outgassing: diode output power falling off, spectrum degraded6.64
    PhotodetectorRadiation damage and outgassing: degradation of detection, decrease of photodiode responsivity3.08
    CouplerRadiation induced attenuation: transmitted light power falling off0.25
    IOCRadiation induced attenuation: decrease of transmitted light power; propagation of LiNbO3 crystal microfractures, no power transmitted0.56
    Fiber coilRadiation induced attenuation: power transmitted falling off; fiber broken under the strain: no power transmitted4.35
    ElectronicsSpace environment damage: latching of the logical device, performance degradation of chips
    Table 1. Failure modes and failure rates of components
    ParameterMeasured value
    Coating diameter /μm135
    Cladding diameter /μm100
    Large air hole diameter D /μm4.80
    Small air hole diameter d /μm2.20
    Air hole period Λ /μm4.40
    Birefringence8.6×10-4
    Transmission loss /(dB·km-1)1.1
    Table 2. Parameters of PM-PCF for spacial IFOGs
    ModelMiniature four-axis IFOGMiniature three-axis IFOGPM-PCF IFOG
    Appearance
    Bias stability (100 s, 1σ) /[(°)·h-1]≤0.020.2≤0.002
    Random walk coefficient /[(°)·h-1/2]≤0.0050.05≤0.0004
    Scale factor performance /10-6≤50≤100≤10
    Dimension /mm135×135×10080×80×50
    Mass /kg≤2≤0.4
    Power consumption /W≤10≤4
    Table 3. Typical spacial IFOGs developed by Beihang University
    Jing Jin, Tiezhi Li, Xiaowei Wang, Shen Tan, Zhiyu Guo, Ningfang Song. Fiber Optic Gyroscopes for Space Applications[J]. Chinese Journal of Lasers, 2022, 49(19): 1910001
    Download Citation