• Frontiers of Optoelectronics
  • Vol. 5, Issue 4, 445 (2012)
Hussein TALEB and Kambiz ABEDI*
Author Affiliations
  • Department of Electrical Engineering, Faculty of Electrical and Computer Engineering, Shahid Beheshti University, Tehran 1983963113, Iran
  • show less
    DOI: 10.1007/s12200-012-0288-4 Cite this Article
    Hussein TALEB, Kambiz ABEDI. Homogeneous and inhomogeneous broadening effects on static and dynamic responses of quantum-dot semiconductor optical amplifiers[J]. Frontiers of Optoelectronics, 2012, 5(4): 445 Copy Citation Text show less
    References

    [1] Borri P, Langbein W, Hvam J M, Heinrichsdorff F, Mao H M, Bimberg D. Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers. IEEE Journal on Selected Topics in Quantum Electronics, 2000, 6(3): 544-551

    [2] Sugawara M, Ebe H, Hatori N, Ishida M, Arakawa Y, Akiyama T, Otsubo K, Nakata Y. Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers. Physical Review B: Condensed Matter and Materials Physics, 2004, 69(23): 235332

    [3] van der Poel M, Gehrig E, Hess O, Birkedal D, Hvam J M. Ultrafast gain dynamics in quantum-dot amplifiers: theoretical analysis and experimental investigations. IEEE Journal of Quantum Electronics, 2005, 41(9): 1115-1123

    [4] Kim J, Laemmlin M, Meuer C, Bimberg D, Eisenstein G. Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 2009, 45(3): 240-248

    [5] Bilenca A, Eisenstein G. On the noise properties of linear and nonlinear quantum-dot semiconductor optical amplifiers: the impact of inhomogeneously broadened gain and fast carrier dynamics. IEEE Journal of Quantum Electronics, 2004, 40(6): 690-702

    [6] Berg T W, Mork J. Saturation and noise properties of quantum-dot optical amplifiers. IEEE Journal of Quantum Electronics, 2004, 40(11): 1527-1539

    [7] Akiyama T, Ekawa M, Sugawara M, Kawaguchi K, Sudo H, Kuramata A, Ebe H, Arakawa Y. An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots. IEEE Photonics Technology Letters, 2005, 17(8): 1614-1616

    [8] Meuer C, Schmeckebier H, Fiol G, Arsenijevi’c D, Kim J, Eisenstein G, Bimberg D. Cross-gain modulation and four-wave mixing for wavelength conversion in undoped and p-doped 1.3-m quantum dot semiconductor optical amplifiers. IEEE Journal of Photonics, 2010, 2(2): 141-151

    [9] Sugawara M, Hatori N, Ishida M, Ebe H, Arakawa Y, Akiyama T, Otsubo K, Yamamoto Y, Nakata Y. Recent progress in selfassembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb$s-1 directly modulated lasers and 40 Gb$s-1 signal-regenerative amplifiers. Journal of Physics D: Applied Physics, 2005, 38(13): 2126-2134

    [10] Rostami A, Nejad H B A, Qartavol R M, Saghai H R. Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 2010, 46(3): 354-360

    [11] Meuer C, Kim J, Laemmlin M, Liebich S, Eisenstein G, Bonk R, Vallaitis T, Leuthold J, Kovsh A, Krestnikov I, Bimberg D. Highspeed small-signal cross-gain modulation in quantum-dot semiconductor optical amplifiers at 1.3 μm. IEEE Journal on Selected Topics in Quantum Electronics, 2009, 15(3): 749-756

    [12] Kim J, Laemmlin M, Meuer C, Bimberg D, Eisenstein G. Effect of inhomogeneous broadening on gain and phase recovery of quantumdot semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 2010, 46(11): 1670-1680

    [13] Kuntze S B, Zilkie A J, Pavel L, Aitchison J S. Nonlinear state-space model of semiconductor optical amplifiers with gain compression for system design and analysis. Journal of Lightwave Technology, 2008, 26(14): 2274-2281

    [14] Taleb H, Abedi K, Golmohammadi S. Operation of quantum-dot semiconductor optical amplifiers under nonuniform current injection. Applied Optics, 2011, 50(5): 608-617

    [15] Meuer C, Kim J, Laemmlin M, Liebich S, Capua A, Eisenstein G, Kovsh A R, Mikhrin S S, Krestnikov I L, Bimberg D. Static gain saturation in quantum dot semiconductor optical amplifiers. Optics Express, 2008, 16(11): 8269-8279

    [16] Xiao J L, Yang Y D, Huang Y Z. Investigation of gain recovery for InAs/GaAs quantum dot semiconductor optical amplifiers by rate equation simulation. Optical and Quantum Electronics, 2009, 41(8): 613-626

    [17] Vasileiadis M, Alexandropoulos D, Adams M J, Simos H, Syvridis D. Potential of InGaAs/GaAs quantum dots for applications in vertical cavity semiconductor optical amplifiers. IEEE Journal on Selected Topics in Quantum Electronics, 2008, 14(4): 1180-1187

    [18] Blood P. Gain and recombination in quantum dot lasers. IEEE Journal on Selected Topics in Quantum Electronics, 2009, 15(3): 808-818

    [19] Kim J, Laemmlin M, Meuer C, Bimberg D, Eisenstein G. Static gain saturation model of quantum-dot semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 2008, 44(7): 658-666

    [20] Ozgur G, Demir A, Deppe D G. Threshold temperature dependence of a quantum-dot laser diode with and without p-doping. IEEE Journal of Quantum Electronics, 2009, 45(10): 1265-1272

    [21] Wong H C, Ren G B, Rorison J M. Mode amplification in inhomogeneous QD semiconductor optical amplifiers. Optical and Quantum Electronics, 2006, 38(4-6): 395-409

    [22] Qasaimeh O. Optical gain and saturation characteristics of quantumdot semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 2003, 39(6): 793-798

    Hussein TALEB, Kambiz ABEDI. Homogeneous and inhomogeneous broadening effects on static and dynamic responses of quantum-dot semiconductor optical amplifiers[J]. Frontiers of Optoelectronics, 2012, 5(4): 445
    Download Citation