• Chinese Journal of Lasers
  • Vol. 49, Issue 12, 1201004 (2022)
Jiaxing Heng1, Xi Feng1, Pei Liu1, and Zhaowei Zhang1、2、*
Author Affiliations
  • 1School of Optical & Electronic Information, Huazhong University of Science & Technology, Wuhan 430074, Hubei, China
  • 2Wuhan National Laboratory for Optoelectronics, Huazhong University of Science & Technology, Wuhan 430074, Hubei, China
  • show less
    DOI: 10.3788/CJL202249.1201004 Cite this Article Set citation alerts
    Jiaxing Heng, Xi Feng, Pei Liu, Zhaowei Zhang. Research Progress on Intracavity Spectral Broadening in Femtosecond Optical Parametric Oscillators[J]. Chinese Journal of Lasers, 2022, 49(12): 1201004 Copy Citation Text show less
    References

    [1] Li C F[M]. Nonlinear optics principle and application(2015).

    [2] Giordmaine J A, Miller R C. Tunable coherent parametric oscillation in LiNbO3 at optical frequencies[J]. Physical Review Letters, 14, 973-976(1965).

    [3] Edelstein D C, Wachman E S, Tang C L. Broadly tunable high repetition rate femtosecond optical parametric oscillator[J]. Applied Physics Letters, 54, 1728-1730(1989).

    [4] Hu M L, Wang J, Fan J T. Research progress on fiber laser-pumped femtosecond optical parametric oscillators[J]. Chinese Journal of Lasers, 48, 1901001(2021).

    [5] Tian W L, Zhu J F, Wang Z H et al. Optical parametric oscillators synchronously pumped by all-solid-state femtosecond lasers[J]. Chinese Journal of Lasers, 46, 0508015(2019).

    [6] Udem T, Holzwarth R, Hänsch T W. Optical frequency metrology[J]. Nature, 416, 233-237(2002).

    [7] Ashik A S, O’Donnell C F, Kumar S C et al. Mid-infrared upconversion imaging using femtosecond pulses[J]. Photonics Research, 7, 783-791(2019).

    [8] Hermes M, Morrish R B, Huot L et al. Mid-IR hyperspectral imaging for label-free histopathology and cytology[J]. Journal of Optics, 20, 023002(2018).

    [9] Coluccelli N, Viola D, Kumar V et al. Tunable 30 fs light pulses at 1 W power level from a Yb-pumped optical parametric oscillator[J]. Optics Letters, 42, 4545-4548(2017).

    [10] Jiang J, Hasama T. Harmonic repetition-rate femtosecond optical parametric oscillator[J]. Applied Physics B, 74, 313-317(2002).

    [11] Meng J, Cong Z H, Zhao Z G et al. 100 Hz high-energy KTA dual-wavelength optical parametric oscillator[J]. Chinese Journal of Lasers, 48, 1201009(2021).

    [12] Chen Y N, Silfies M C, Kowzan G et al. Tunable visible frequency combs from a Yb-fiber-laser-pumped optical parametric oscillator[J]. Applied Physics B, 125, 81(2019).

    [13] Lang L, Bauer C P, Phillips C R et al. 51-W average power, 169-fs pulses from an ultrafast non-collinear optical parametric oscillator[J]. Optics Express, 29, 36321-36327(2021).

    [14] Tian W L, Wang Z H, Zhu J F et al. Harmonically pumped femtosecond optical parametric oscillator with multi-gigahertz repetition rate[J]. Optics Express, 24, 29814-29821(2016).

    [15] Fan J T, Gu C L, Wang C Y et al. Extended femtosecond laser wavelength range to 330 nm in a high power LBO based optical parametric oscillator[J]. Optics Express, 24, 13250-13257(2016).

    [16] Mevert R, Binhammer Y, Dietrich C M et al. Widely tunable, high-power, femtosecond noncollinear optical parametric oscillator in the visible spectral range[J]. Photonics Research, 9, 1715-1718(2021).

    [17] Binhammer Y, Binhammer T, Mevert R et al. Fast-tunable femtosecond visible radiation via sum-frequency generation from a high power NIR NOPO[J]. Optics Express, 29, 22366-22375(2021).

    [18] Schunemann P G, Johnson K, Farrell C et al. Continuous wavelength tuning from 3.912 μm from an optical parametric oscillator based on orientation-patterned GaP grown on GaAs[J]. Optical Materials Express, 11, 654-663(2021).

    [19] Ycas G, Giorgetta F R, Baumann E et al. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm[J]. Nature Photonics, 12, 202-208(2018).

    [20] Israelsen N M, Petersen C R, Barh A et al. Real-time high-resolution mid-infrared optical coherence tomography[J]. Light: Science & Applications, 8, 11(2019).

    [21] Petersen C R, Prtljaga N, Farries M et al. Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source[J]. Optics Letters, 43, 999-1002(2018).

    [22] Huth F, Govyadinov A, Amarie S et al. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution[J]. Nano Letters, 12, 3973-3978(2012).

    [23] Hernández-García C, Popmintchev T, Murnane M M et al. Isolated broadband attosecond pulse generation with near- and mid-infrared driver pulses via time-gated phase matching[J]. Optics Express, 25, 11855-11866(2017).

    [24] Elu U, Maidment L, Vamos L et al. Seven-octave high-brightness and carrier-envelope-phase-stable light source[J]. Nature Photonics, 15, 277-280(2021).

    [25] Sutter D H, Steinmeyer G, Gallmann L et al. Semiconductor saturable-absorber mirror assisted Kerr-lens mode-locked Ti∶sapphire laser producing pulses in the two-cycle regime[J]. Optics Letters, 24, 631-633(1999).

    [26] Jiao K, Yao J M, Wang X G et al. 1.215.2 μm supercontinuum generation in a low-loss chalcohalide fiber pumped at a deep anomalous-dispersion region[J]. Optics Letters, 44, 5545-5548(2019).

    [27] Lemière A, Bizot R, Désévédavy F et al. 1.718 μm mid-infrared supercontinuum generation in a dispersion-engineered step-index chalcogenide fiber[J]. Results in Physics, 26, 104397(2021).

    [28] Feng X, Shi J Q, Liu P et al. Broadband mid-infrared coherent light source from fiber-laser-pumped difference frequency generators based on cascaded crystals[J]. Optics Express, 28, 14310-14318(2020).

    [29] Zhang J W, Mak K F, Nagl N et al. Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm-1[J]. Light: Science & Applications, 7, 17180(2018).

    [30] Feng X, Liu F, Ning C X et al. Broadband mid-IR light sources from difference frequency generators based on a 2-mm-long aperiodically-poled lithium-niobate crystal[J]. IEEE Photonics Journal, 13, 1500705(2021).

    [31] Feng X, Zhang Z W. Broadband mid-infrared light based on difference frequency generators[J]. Chinese Journal of Lasers, 49, 0101018(2022).

    [32] Cheung E C, Liu J M. Theory of a synchronously pumped optical parametric oscillator in steady-state operation[J]. Journal of the Optical Society of America B, 7, 1385-1401(1990).

    [33] Morgner U, Kärtner F X, Cho S H et al. Sub-two-cycle pulses from a Kerr-lens mode-locked Ti∶sapphire laser[J]. Optics Letters, 24, 411-413(1999).

    [34] Ell R, Morgner U, Kãârtner F X et al. Generation of 5-fs pulses and octave-spanning spectra directly from a Ti∶sapphire laser[J]. Optics Letters, 26, 373-375(2001).

    [35] Kumar S C, Esteban-Martin A, Ideguchi T et al. Few-cycle, broadband, mid-infrared optical parametric oscillator pumped by a 20-fs Ti∶sapphire laser[J]. Laser & Photonics Reviews, 8, L86-L91(2014).

    [36] McCracken R A, Reid D T. Few-cycle near-infrared pulses from a degenerate 1 GHz optical parametric oscillator[J]. Optics Letters, 40, 4102-4105(2015).

    [37] Zhou Q H, Chen L F, Xu X Y. Numerical modeling of thermal effects in a high-power injection-locked cw Ti∶sapphire laser[J]. Optics Communications, 284, 4207-4214(2011).

    [38] Bjorkholm J. Analysis of the doubly resonant optical parametric oscillator without power-dependent reflections[J]. IEEE Journal of Quantum Electronics, 5, 293-295(1969).

    [39] Ning C X, Liu P, Qin Y X et al. Continuous wavelength tuning of nondegenerate femtosecond doubly resonant optical parametric oscillators[J]. Optics Letters, 45, 2551-2554(2020).

    [40] Leindecker N, Marandi A, Byer R L et al. Broadband degenerate OPO for mid-infrared frequency comb generation[J]. Optics Express, 19, 6296-6302(2011).

    [41] McCracken R A, Reid D T. Few-cycle near-infrared pulses from a degenerate 1 GHz optical parametric oscillator[J]. Optics Letters, 40, 4102-4105(2015).

    [42] Rudy C W, Marandi A, Ingold K A et al. Sub-50 fs pulses around 2070 nm from a synchronously-pumped, degenerate OPO[J]. Optics Express, 20, 27589-27595(2012).

    [43] Leindecker N, Marandi A, Byer R L et al. Octave-spanning ultrafast OPO with 2.66.1 μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser[J]. Optics Express, 20, 7046-7053(2012).

    [44] Ru Q T, Lee N, Chen X et al. Optical parametric oscillation in a random polycrystalline medium[J]. Optica, 4, 617-618(2017).

    [45] Ning C X, Feng X, Heng J X et al. Supercontinuum generation from a quasi-stationary doubly resonant optical parametric oscillator[J]. Optics Letters, 46, 4280-4283(2021).

    [46] Grelu P, Akhmediev N. Dissipative solitons for mode-locked lasers[J]. Nature Photonics, 6, 84-92(2012).

    [47] Tamura K, Ippen E P, Haus H A et al. 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser[J]. Optics letters, 18, 1080-1082(1993).

    [48] Kartner F X, Jung I D, Keller U. Soliton mode-locking with saturable absorbers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2, 540-556(1996).

    [49] Sun J H, Gale B J S, Reid D T. Dual-color operation of a femtosecond optical parametric oscillator exhibiting stable relative carrier-envelope phase-slip frequencies[J]. Optics Letters, 31, 2021-2023(2006).

    [50] Jin Y W, Cristescu S M, Harren F J M et al. Two-crystal mid-infrared optical parametric oscillator for absorption and dispersion dual-comb spectroscopy[J]. Optics Letters, 39, 3270-3273(2014).

    [51] Esteban-Martin A, Ramaiah-Badarla V, Ebrahim-Zadeh M. Dual-wavelength optical parametric oscillator using antiresonant ring interferometer[J]. Laser & Photonics Reviews, 6, L7-L11(2012).

    [52] Jin Y W, Cristescu S M, Harren F J M et al. Broadly, independent-tunable, dual-wavelength mid-infrared ultrafast optical parametric oscillator[J]. Optics Express, 23, 20418-20427(2015).

    [53] Liu P, Wang S C, He P Y et al. Dual-channel operation in a synchronously pumped optical parametric oscillator for the generation of broadband mid-infrared coherent light sources[J]. Optics Letters, 43, 2217-2220(2018).

    [54] Chen L Z, Wen S C, Wang Y W et al. Ultrabroadband optical parametric chirped-pulse amplifier using a fan-out periodically poled crystal with spectral spatial dispersion[J]. Physical Review A, 82, 043843(2010).

    [55] Schmidt B E, Thiré N, Boivin M et al. Frequency domain optical parametric amplification[J]. Nature Communications, 5, 3643(2014).

    [56] Nagashima K, Itakura R, Ishii N. Broadband operation of a synchronously pumped optical parametric oscillator with a spatially dispersed beam[J]. Optics Letters, 46, 4414-4417(2021).

    [57] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 56, 219-221(1985).

    [58] Maine P, Strickland D, Bado P et al. Generation of ultrahigh peak power pulses by chirped pulse amplification[J]. IEEE Journal of Quantum Electronics, 24, 398-403(1988).

    [59] Ross I N, Matousek P, New G H C et al. Analysis and optimization of optical parametric chirped pulse amplification[J]. Journal of the Optical Society of America B, 19, 2945-2956(2002).

    [60] Röser F, Eidam T, Rothhardt J et al. Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 32, 3495-3497(2007).

    [61] Ilday F O, Buckley J R, Clark W G et al. Self-similar evolution of parabolic pulses in a laser[J]. Physical Review Letters, 92, 213902(2004).

    [62] Proctor B, Westwig E, Wise F. Characterization of a Kerr-lens mode-locked Ti∶sapphire laser with positive group-velocity dispersion[J]. Optics Letters, 18, 1654-1656(1993).

    [63] Fernandez A, Fuji T, Poppe A et al. Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification[J]. Optics Letters, 29, 1366-1368(2004).

    [64] Pelouch W S, Powers P E, Tang C L. Ti∶sapphire-pumped, high-repetition-rate femtosecond optical parametric oscillator[J]. Optics Letters, 17, 1070-1072(1992).

    [65] Fu Q, Mak G, van Driel H M. High-power, 62-fs infrared optical parametric oscillator synchronously pumped by a 76-MHz Ti∶sapphire laser[J]. Optics Letters, 17, 1006-1008(1992).

    [66] Liu P, Zhang Z W. Chirped-pulse optical parametric oscillators[J]. Optics Letters, 43, 4735-4738(2018).

    [67] Liu P, Zhang Z W. Generation of mid-infrared emission with a 3.14.5 μm instantaneous bandwidth from a chirped-pulse optical parametric oscillator[J]. Optics Letters, 44, 3988-3991(2019).

    [68] Liu P, Heng J X, Zhang Z W. Chirped-pulse generation from optical parametric oscillators with an aperiodic quasi-phase-matching crystal[J]. Optics Letters, 45, 2568-2571(2020).

    [69] Arbore M A, Marco O, Fejer M M. Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings[J]. Optics Letters, 22, 865-867(1997).

    [70] Arbore M A, Galvanauskas A, Harter D et al. Engineerable compression of ultrashort pulses by use of second-harmonic generation in chirped-period-poled lithium niobate[J]. Optics Letters, 22, 1341-1343(1997).

    [71] Beddard T, Ebrahimzadeh M, Reid T D et al. Five-optical-cycle pulse generation in the mid infrared from an optical parametric oscillator based on aperiodically poled lithium niobate[J]. Optics Letters, 25, 1052-1054(2000).

    [72] Liu P, Heng J X, Zhang Z W. Chirped-pulse optical parametric oscillators and the generation of broadband midinfrared laser sources(invited)[J]. Infrared and Laser Engineering, 49, 20201051(2020).

    [73] Boyd R W[M]. Nonlinear optics(2008).

    [74] Chong A, Liu H, Nie B et al. Pulse generation without gain-bandwidth limitation in a laser with self-similar evolution[J]. Optics Express, 20, 14213-14220(2012).

    [75] Lan Y, Song Y J, Hu M L et al. Enhanced spectral breathing for sub-25 fs pulse generation in a Yb-fiber laser[J]. Optics Letters, 38, 1292-1294(2013).

    [76] Ma C Y, Khanolkar A, Zang Y M et al. Ultrabroadband, few-cycle pulses directly from a Mamyshev fiber oscillator[J]. Photonics Research, 8, 65-69(2019).

    [77] Pronin O, Brons J, Grasse C et al. High-power Kerr-lens mode-locked Yb∶YAG thin-disk oscillator in the positive dispersion regime[J]. Optics Letters, 37, 3543-3545(2012).

    [78] Zhang J W, Brons J, Seidel M et al. Generation of 49-fs pulses directly from distributed Kerr-lens mode-locked Yb∶YAG thin-disk oscillator[C], ATh4A.7(2015).

    [79] Heng J X, Liu P, Zhang Z W. Enhanced spectral broadening in an optical parametric oscillator based on a PPLN crystal[J]. Optics Express, 28, 16740-16748(2020).

    [80] Heng J X, Liu P, Zhang Z W. Spectral broadening in chirped-pulse optical parametric oscillators based on KTiOAsO4[J]. Optics Letters, 45, 5085-5088(2020).

    [81] Khaydarov J D, Andrews J H, Singer K D. Pulse compression in a synchronously pumped optical parametric oscillator from group-velocity mismatch[J]. Optics Letters, 19, 831-833(1994).

    [82] Khaydarov J D V, Andrews J H, Singer K D. 20-fold pulse compression in a synchronously pumped optical parametric oscillator[J]. Applied Physics Letters, 65, 1614-1616(1994).

    [83] Khaydarov J D V, Andrews J H, Singer K D. Pulse-compression mechanism in a synchronously pumped optical parametric oscillator[J]. Journal of the Optical Society of America B, 12, 2199-2208(1995).

    [84] Lefort L, Puech K, Butterworth S D et al. Generation of femtosecond pulses from order-of-magnitude pulse compression in a synchronously pumped optical parametric oscillator based on periodically poled lithium niobate[J]. Optics Letters, 24, 28-30(1999).

    [85] Kurti R S, Singer K D. Pulse compression in a silver gallium sulfide, midinfrared, synchronously pumped optical parametric oscillator[J]. Journal of the Optical Society of America B, 22, 2157-2163(2005).

    [86] Fan J T, Gu C L, Liao R Y et al. High power 4.2-cycle mid-infrared pulses from a self-compression optical parametric oscillator[J]. IEEE Photonics Journal, 10, 1504807(2018).

    [87] Ning C X, Zhang Z W. Multi-soliton formation in femtosecond degenerate optical parametric oscillators[J]. Optics Letters, 45, 734-737(2020).

    [88] Zhang J, Ning C X, Heng J X et al. Ultra-short pulse generation from optical parametric oscillators with a cavity-length detuning[J]. IEEE Photonics Technology Letters, 34, 263-266(2022).

    Jiaxing Heng, Xi Feng, Pei Liu, Zhaowei Zhang. Research Progress on Intracavity Spectral Broadening in Femtosecond Optical Parametric Oscillators[J]. Chinese Journal of Lasers, 2022, 49(12): 1201004
    Download Citation