[1] J.S. Kilby, Invention of integrated-circuit. IEEE Tran. Electron. Devices 23(7), 648–654 (1976).
[2] K. Uchida, H. Watanabe, A. Kinoshita, J. Koga, T. Numata et al., Experimental study on carrier transport mechanism in ultrathin-body SOI n- and p-MOSFETs with SOI thickness less than 5 nm. in 2002 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 47–50 (2002).
[3] D.J. Frank, R.H. Dennard, E. Nowak, P.M. Solomon, Y. Taur et al., Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89(3), 259–288 (2001).
[4] S. Zeng, Z. Tang, C. Liu, P. Zhou, Electronics based on two-dimensional materials: Status and outlook. Nano Res. 14, 1752–1767 (2021).
[5] D.E. Nikonov, I.A. Young, Overview of beyond-CMOS devices and a uniform methodology for their benchmarking. Proc. IEEE 101(12), 2498–2533 (2013).
[6] S. Yang, C. Jiang, S.-H. Wei, Gas sensing in 2D materials. Appl. Phys. Rev. 4(2), 021304 (2017).
[7] Z. Xie, R. Avila, Y. Huang, J.A. Rogers, Flexible and stretchable antennas for biointegrated electronics. Adv. Mater. 32(15), 1902767 (2020).
[8] C. Choi, Y. Lee, K.W. Cho, J.H. Koo, D.-H. Kim, Wearable and implantable soft bioelectronics using two-dimensional materials. Acc. Chem. Res. 52(1), 73–81 (2019).
[9] H. Xiang, Y.-C. Chien, Y. Shi, K.-W. Ang, Application of 2D materials in hardware security for Internet-of-Things: Progress and perspective. Small Struct. 3(8), 2200060 (2022).
[10] C. Cui, F. Xue, W.-J. Hu, L.-J. Li, Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater. Appl. 2, 18 (2018).
[11] C. Liu, H. Chen, S. Wang, Q. Liu, Y.-G. Jiang et al., Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 15, 545–557 (2020).
[12] A. Pal, S. Zhang, T. Chavan, K. Agashiwala, C.H. Yeh et al., Quantum-engineered devices based on 2D materials for next-generation information processing and storage. Adv. Mater. 35(27), 2109894 (2022).
[13] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).
[14] S.J.B. Yoo, B. Guan, R.P. Scott, Heterogeneous 2D/3D photonic integrated microsystems. Microsyst. Nanoeng. 2, 16030 (2016).
[15] M. Donarelli, L. Ottaviano, 2D materials for gas sensing applications: a review on graphene oxide, MoS2, WS2 and phosphorene. Sensors 18(11), 3638 (2018).
[16] V.D. Leyen, Fast-Forward into the Tech Future. (Antwerp, Belgium, 2022)
[17] S.H. Choi, S.J. Yun, Y.S. Won, C.S. Oh, S.M. Kim et al., Large-scale synthesis of graphene and other 2D materials towards industrialization. Nat. Commun. 13, 1484 (2022).
[18] X. Chen, Y. Xie, Y. Sheng, H. Tang, Z. Wang et al., Wafer-scale functional circuits based on two-dimensional semiconductors with fabrication optimized by machine learning. Nat. Commun. 12, 5953 (2021).
[19] P. Yang, X. Zou, Z. Zhang, M. Hong, J. Shi et al., Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 9, 979 (2018).
[20] S. Wachter, D.K. Polyushkin, O. Bethge, T. Mueller, A microprocessor based on a two-dimensional semiconductor. Nat. Commun. 8, 14948 (2017).
[21] J.-Y. Kim, X. Ju, K.-W. Ang, D. Chi, Van der Waals layer transfer of 2D materials for monolithic 3D electronic system integration: review and outlook. ACS Nano 17(3), 1831–1844 (2023).
[22] R. Campos, G. Machado, M.F. Cerqueira, J. Borme, P. Alpuim, Wafer scale fabrication of graphene microelectrode arrays for the detection of DNA hybridization. Microelectron. Eng. 189, 85–90 (2018).
[23] M. Chhowalla, D. Jena, H. Zhang, Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).
[24] F. Schwierz, Graphene transistors: Status, prospects, and problems. Pros. IEEE 101(7), 1567–1584 (2013).
[25] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004).
[26] S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta et al., Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4), 2898–2926 (2013).
[27] L. Banszerus, M. Schmitz, S. Engels, J. Dauber, M. Oellers et al., Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1(6), e1500222 (2015).
[28] Y. Liu, X. Duan, H.-J. Shin, S. Park, Y. Huang et al., Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).
[29] X. Li, J.T. Mullen, Z. Jin, K.M. Borysenko, M.B. Nardellil et al., Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys. Rev. B 87(11), 115418 (2013).
[30] E. Cinquanta, E. Scalise, D. Chiappe, C. Grazianetti, M. Houssa et al., Getting through the nature of silicene: An sp2-sp3 two-dimensional silicon nanosheet. J. Phys. Chem. C 117(32), 16719–16724 (2013).
[31] L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli et al., Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10, 227–231 (2015).
[32] Y. Liu, H. Wu, H.-C. Cheng, S. Yang, E. Zhu et al., Toward barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett. 15(5), 3030–3034 (2015).
[33] S.B. Desai, S.R. Madhvapathy, A.B. Sachid, J.P. Llinas, Q. Wang et al., MoS2 transistors with 1-nanometer gate lengths. Science 354(6308), 99–102 (2016).
[34] Y.Y. Illarionov, A.G. Banshchikov, D.K. Polyushkin, S. Wachter, T. Knobloch et al., Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors. Nat. Electron. 2, 230–235 (2019).
[35] L. Kong, Y. Chen, Y. Liu, Recent progresses of NMOS and CMOS logic functions based on two-dimensional semiconductors. Nano Res. 14(6), 1768–1783 (2021).
[36] M. Qian, Y. Pan, F. Liu, M. Wang, H. Shen et al., Tunable, ultralow-power switching in memristive devices enabled by a heterogeneous graphene-oxide interface. Adv. Mater. 26(20), 3275–3281 (2014).
[37] K. Qian, R.Y. Tay, V.C. Nguyen, J. Wang, G. Cai et al., Hexagonal boron nitride thin film for flexible resistive memory applications. Adv. Funct. Mater. 26(13), 2176–2184 (2016).
[38] S. Kim, G. Myeong, W. Shin, H. Lim, B. Kim et al., Thickness-controlled black phosphorus tunnel field-effect transistor for low-power switches. Nat. Nanotechnol. 15, 203–206 (2020).
[39] X. Wang, P. Yu, Z. Lei, C. Zhu, X. Cao et al., Van der waals negative capacitance transistors. Nat. Commun. 10, 3037 (2019).
[40] H. Tian, X. Wang, H. Zhao, W. Mi, Y. Yang et al., A graphene-based filament transistor with sub-10 mVdec−1 subthreshold swing. Adv. Electron. Mater. 4(4), 1700608 (2018).
[41] M. Lanza, Q. Smets, C. Huyghebaert, L.-J. Li, Yield, variability, reliability, and stability of two-dimensional materials based solid-state electronic devices. Nat. Commun. 11, 5689 (2020).
[42] G. Xue, X. Sui, P. Yin, Z. Zhou, X. Li et al., Modularized batch production of 12-inch transition metal dichalcogenides by local element supply. Sci. Bull. 68(14), 1514–1521 (2023).
[43] P. Yang, S. Zhang, S. Pan, B. Tang, Y. Liang et al., Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111). ACS Nano 14(4), 5036–5045 (2020).
[44] J.-H. Park, A.-Y. Lu, P.-C. Shen, B.G. Shin, H. Wang et al., Synthesis of high-performance monolayer molybdenum disulfide at low temperature. Small Methods 5(6), 2000720 (2021).
[45] J. Mun, H. Park, J. Park, D. Joung, S.-K. Lee et al., High-mobility MoS2 directly grown on polymer substrate with kinetics-controlled metal-organic chemical vapor deposition. ACS Appl. Electron. Mater. 1(4), 608–616 (2019).
[46] J. Zhu, J.-H. Park, S.A. Vitale, W. Ge, G.S. Jung et al., Low-thermal-budget synthesis of monolayer molybdenum disulfide for silicon back-end-of-line integration on a 200 mm platform. Nat. Nanotechnol. 18, 456–463 (2023).
[47] J. Mun, Y. Kim, I.-S. Kang, S.K. Lim, S.J. Lee et al., Low-temperature growth of layered molybdenum disulphide with controlled clusters. Sci. Rep. 6, 21854 (2016).
[48] L. Liu, T. Li, L. Ma, W. Li, S. Gao et al., Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 605, 69–75 (2022).
[49] J. Chen, W. Tang, B. Tian, B. Liu, X. Zhao et al., Chemical vapor deposition of high-quality large-sized MoS2 crystals on silicon dioxide substrates. Adv. Sci. 3(8), 1500033 (2016).
[50] I. Bilgin, F. Liu, A. Vargas, A. Winchester, M.K.L. Man et al., Chemical vapor deposition synthesized atomically thin molybdenum disulfide with optoelectronic-grade crystalline quality. ACS Nano 9(9), 8822–8832 (2015).
[51] W. Chen, J. Zhao, J. Zhang, L. Gu, Z. Yang et al., Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2. J. Am. Chem. Soc. 137(50), 15632–15635 (2015).
[52] H. Yu, M. Liao, W. Zhao, G. Liu, X.J. Zhou et al., Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano 11(12), 12001–12007 (2017).
[53] Y. Huang, Y.-H. Pan, R. Yang, L.-H. Bao, L. Meng et al., Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 11, 2453 (2020).
[54] X. Lan, Y. Cheng, X. Yang, Z. Zhang, Wafer-scale engineering of two-dimensional transition metal chalcogenides. Chip 2(3), 100057 (2023).
[55] T. Li, W. Guo, L. Ma, W. Li, Z. Yu et al., Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).
[56] N. Briggs, S. Subramanian, Z. Lin, X. Li, X. Zhang et al., A roadmap for electronic grade 2D materials. 2D Mater. 6, 022001 (2019).
[57] Z. Ye, C. Tan, X. Huang, Y. Ouyang, L. Yang et al., Emerging MoS2 wafer-scale technique for integrated circuits. Nano-Micro Lett. 15, 38 (2023).
[58] K. Kang, S. Xie, L. Huang, Y. Han, P.Y. Huang et al., High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).
[59] S. Hwangbo, L. Hu, A.T. Hoang, J.Y. Choi, J.-H. Ahn, Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor. Nat. Nanotechnol. 17, 500–506 (2022).
[60] M.-L. Shi, L. Chen, T.-B. Zhang, J. Xu, H. Zhu et al., Top-down integration of molybdenum disulfide transistors with wafer-scale uniformity and layer controllability. Small 13(35), 1603157 (2017).
[61] J.-Y. Moon, M. Kim, S.-I. Kim, S. Xu, J.-H. Choi et al., Layer-engineered large-area exfoliation of graphene. Sci. Adv. 6(44), 6601 (2020).
[62] D. Akinwande, N. Petrone, J. Hone, Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014).
[63] L. Huang, Y. Huang, J. Liang, X. Wan, Y. Chen, Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res. 4, 675–684 (2011).
[64] Z. Lin, Y. Liu, U. Halim, M. Ding, Y. Liu et al., Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018).
[65] N. Zavanelli, W.-H. Yeo, Advances in screen printing of conductive nanomaterials for stretchable electronics. ACS Omega 6(14), 9344–9351 (2021).
[66] K.S. Kim, D. Lee, C.S. Chang, S. Seo, Y. Hu et al., Non-epitaxial single-crystal 2D material growth by geometric confinement. Nature 614, 88–94 (2023).
[67] S.A. Iyengar, S. Bhattacharyya, S. Roy, N.R. Glavin, A.K. Roy et al., A researcher’s perspective on unconventional lab-to-fab for 2D semiconductor devices. ACS Nano 17(14), 12955–12970 (2023).
[68] L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).
[69] F. Wu, H. Tian, Y. Shen, Z. Hou, J. Ren et al., Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 603, 259–264 (2022).
[70] F. Wu, J. Ren, Y. Yang, Z. Yan, H. Tian et al., A 10 nm short channel MoS2 transistor without the resolution requirement of photolithography. Adv. Electron. Mater. 7(12), 2100543 (2021).
[71] K.A. Patel, R.W. Grady, K.K.H. Smithe, E. Pop, R. Sordan, Ultra-scaled MoS2 transistors and circuits fabricated without nanolithography. 2D Mater. 7, 015018 (2020).
[72] R. Wu, Q. Tao, J. Li, W. Li, Y. Chen et al., Bilayer tungsten diselenide transistors with on-state currents exceeding 1.5 milliamperes per micrometre. Nat. Electron. 5, 497–504 (2022).
[73] K. Xu, D. Chen, F. Yang, Z. Wang, L. Yin et al., Sub-10 nm nanopattern architecture for 2D material field-effect transistors. Nano Lett. 17(2), 1065–1070 (2017).
[74] J. Jiang, M.-H. Doan, L. Sun, H. Kim, H. Yu et al., Ultrashort vertical-channel van der Waals semiconductor transistors. Adv. Sci. 7(4), 1902964 (2020).
[75] L. Liu, L. Kong, Q. Li, C. He, L. Ren et al., Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. Nat. Electron. 4(5), 342–347 (2021).
[76] J. Jiang, L. Xu, C. Qiu, L. Peng, Ballistic two-dimensional InSe transistors. Nature 616, 470–475 (2023).
[77] C. Tan, M. Yu, J. Tang, X. Gao, Y. Yin et al., 2D fin field-effect transistors integrated with epitaxial high-k gate oxide. Nature 616, 66–72 (2023).
[78] Y.-Y. Chung, B.-J. Chou, C.-F. Hsu, W.-S. Yun, M.-Y. Li et al., First demonstration of GAA Monolayer-MoS2 nanosheet nFET with 410μA/μm ID at 1V VD at 40nm gate length. in 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 34.5.1–34.5.4 (2022).
[79] X. Xiong, A. Tong, X. Wang, S. Liu, X. Li et al., Demonstration of vertically-stacked CVD monolayer channels: MoS2 nanosheets GAA-FET with Ion > 700 μA/μm and MoS2/WSe2 CFET. in 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7.5.1–7.5.4 (2021).
[80] C.J. Dorow, A. Penumatcha, A. Kitamura, C. Rogan, K.P.O’ Brien et al., Gate length scaling beyond Si: Mono-layer 2D channel FETs robust to short channel effects. in 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7.5.1–7.5.4 (2022).
[81] M. Chen, X. Sun, H. Liu, H. Wang, Q. Zhu et al., A FinFET with one atomic layer channel. Nat. Commun. 11, 1205 (2020).
[82] A. Liu, X. Peng, S. Peng, H. Tian, Dielectrics for 2-D electronics: From device to circuit applications. IEEE Trans. Electron Devices 70(4), 1474–1498 (2022).
[83] W.M. Arden, The international technology roadmap for semiconductors-Perspectives and challenges for the next 15 years. Curr. Opin. Solid State Mater. Sci. 6(5), 371–377 (2002).
[84] M.M. Frank, High-k/metal gate innovations enabling continued CMOS scaling. in 2011 Proceedings of the ESSCIRC (ESSCIRC), Helsinki, Finland, 50–58 (2011).
[85] S. Fukamachi, P. Solis-Fernandez, K. Kawahara, D. Tanaka, T. Otake et al., Large-area synthesis and transfer of multilayer hexagonal boron nitride for enhanced graphene device arrays. Nat. Electron. 6, 126–136 (2023).
[86] T. Knobloch, Y.Y. Illarionov, F. Ducry, C. Schleich, S. Wachter et al., The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nat. Electron. 4, 98–108 (2021).
[87] J.-K. Huang, Y. Wan, J. Shi, J. Zhang, Z. Wang et al., High-κ perovskite membranes as insulators for two-dimensional transistors. Nature 605, 262–267 (2022).
[88] C. Zhang, T. Tu, J. Wang, Y. Zhu, C. Tan et al., Single-crystalline van der Waals layered dielectric with high dielectric constant. Nat. Mater. 22, 832–837 (2023).
[89] M. Fortin-Deschênes, R. Pu, Y.-F. Zhou, C. Ma, P. Cheung et al., Uncovering topological edge states in twisted bilayer graphene. Nano Lett. 22(15), 6186–6193 (2022).
[90] H.G. Kim, H.-B.-R. Lee, Atomic layer deposition on 2D materials. Chem. Mater. 29(9), 3809–3826 (2017).
[91] S. McDonnell, B. Brennan, A. Azcatl, N. Lu, H. Dong et al., HfO2 on MoS2 by atomic layer deposition: Adsorption mechanisms and thickness scalability. ACS Nano 7(11), 10354–10361 (2013).
[92] W. Li, J. Zhou, S. Cai, Z. Yu, J. Zhang et al., Uniform and ultrathin high-kappa gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2(12), 563–571 (2019).
[93] J. Wang, S. Li, X. Zou, J. Ho, L. Liao et al., Integration of high-k oxide on MoS2 by using ozone pretreatment for high-performance MoS2 top-gated transistor with thickness-dependent carrier scattering investigation. Small 11(44), 5932–5938 (2015).
[94] X. Wang, T.-B. Zhang, W. Yang, H. Zhu, L. Chen et al., Improved integration of ultra-thin high-k dielectrics in few-layer MoS2 FET by remote forming gas plasma pretreatment. Appl. Phys. Lett. 110(5), 053110 (2017).
[95] T. Li, T. Tu, Y. Sun, H. Fu, J. Yu et al., A native oxide high-kappa gate dielectric for two-dimensional electronics. Nat. Electron. 3, 473–478 (2020).
[96] D. Qi, P. Li, H. Ou, D. Wu, W. Lian et al., Graphene-enhanced metal transfer printing for strong van der Waals contacts between 3D metals and 2D semiconductors. Adv. Funct. Mater. 33(27), 2301704 (2023).
[97] P.-C. Shen, C. Su, Y. Lin, A.-S. Chou, C.-C. Cheng et al., Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).
[98] Z. Cheng, Y. Yu, S. Singh, K. Price, S.G. Noyce et al., Immunity to contact scaling in MoS2 transistors using in situ edge contacts. Nano Lett. 19(8), 5077–5085 (2019).
[99] D.S. Schulman, A.J. Arnold, S. Das, Contact engineering for 2D materials and devices. Chem. Soc. Rev. 47(9), 3037–3058 (2018).
[100] S. Das, H.-Y. Chen, A.V. Penumatcha, J. Appenzeller, High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13(1), 100–105 (2013).
[101] W. Li, X. Gong, Z. Yu, L. Ma, W. Sun et al., Approaching the quantum limit in two-dimensional semiconductor contacts. Nature 613(7943), 274–279 (2023).
[102] S. Cho, S. Kim, J.H. Kim, J. Zhao, J. Seok et al., Phase patterning for ohmic homojunction contact in MoTe2. Science 349(6248), 625–628 (2015).
[103] Y. Wang, J. Xiao, H. Zhu, Y. Li, Y. Alsaid et al., Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature 550, 487–491 (2017).
[104] J. Zhu, Z. Wang, H. Yu, N. Li, J. Zhang et al., Argon plasma induced phase transition in monolayer MoS2. J. Am. Chem. Soc. 139(30), 10216–10219 (2017).
[105] Z. Qian, L. Jiao, L. Xie, Phase engineering of two-dimensional transition metal dichalcogenides. Chinese J. Chem. 38(7), 753–760 (2020).
[106] G. Kwon, Y.-H. Choi, H. Lee, H.-S. Kim, J. Jeong et al., Interaction- and defect-free van der Waals contacts between metals and two-dimensional semiconductors. Nat. Electron. 5, 241–247 (2022).
[107] Y. Liu, J. Guo, E. Zhu, L. Liao, S.-J. Lee et al., Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 557(7707), 696–700 (2018).
[108] Y. Liu, Y. Huang, X. Duan, Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).
[109] L. Wang, I. Meric, P.Y. Huang, Q. Gao, Y. Gao et al., One-dimensional electrical contact to a two-dimensional material. Science 342(6158), 614–617 (2013).
[110] Y. Wang, M. Chhowalla, Making clean electrical contacts on 2D transition metal dichalcogenides. Nat. Rev. Phys. 4, 101–112 (2022).
[111] A. Jain, A. Szabo, M. Parzefall, E. Bonvin, T. Taniguchi et al., One-dimensional edge contacts to a monolayer semiconductor. Nano Lett. 19(10), 6914–6923 (2019).
[112] M.H.D. Guimarães, H. Gao, Y. Han, K. Kang, S. Xie et al., Atomically thin ohmic edge contacts between two-dimensional materials. ACS Nano 10(6), 6392–6399 (2016).
[113] L. Kong, R. Wu, Y. Chen, Y. Huangfu, L. Liu et al., Wafer-scale and universal van der Waals metal semiconductor contact. Nat. Commun. 14, 1014–1014 (2023).
[114] H. Liu, Q.H. Thi, P. Man, X. Chen, T. Chen et al., Controlled adhesion of ice-toward ultraclean 2D materials. Adv. Mater. 35(14), 2210503 (2023).
[115] Y. Zhao, Y. Song, Z. Hu, W. Wang, Z. Chang et al., Large-area transfer of two-dimensional materials free of cracks, contamination and wrinkles via controllable conformal contact. Nat. Commun. 13, 4409 (2022).
[116] K.K.H. Smithe, S.V. Suryavanshi, M.M. Rojo, A.D. Tedjarati, E. Pop, Low variability in synthetic monolayer MoS2 devices. ACS Nano 11(8), 8456–8463 (2017).
[117] W. Xie, L.-T. Weng, K.M. Ng, C.K. Chan, C.-M. Chan, Clean graphene surface through high temperature annealing. Carbon 94, 740–748 (2015).
[118] L. Yu, D. El-Damak, U. Radhakrishna, X. Ling, A. Zubair et al., Design, modeling, and fabrication of chemical vapor deposition grown MoS2 circuits with e-Mode FETs for large-area electronics. Nano Lett. 16(10), 6349–6356 (2016).
[119] A.D. Smith, K. Elgammal, F. Niklaus, A. Delin, A.C. Fischer et al., Resistive graphene humidity sensors with rapid and direct electrical readout. Nanoscale 7(45), 19099–19109 (2015).
[120] S. Fernandez, A. Molinero, D. Sanz, J.P. Gonzalez, M. Cruz et al., Graphene-based contacts for optoelectronic devices. Micromachines 11(10), 919 (2020).
[121] T. Li, J. Hou, J. Yan, R. Liu, H. Yang et al., Chiplet heterogeneous integration technology-status and challenges. Electronics 9(4), 670 (2020).
[122] C.S. Premachandran, S. Choi, S. Cimino, T.-Q. Thuy, L. Burrell et al., Reliability challenges for 2.5D/3D integration: An overview. in 2018 IEEE International Reliability Physics Symposium (IRPS), Burlingame, CA, USA, 5B.4–1–5B.4–5 (2018).
[123] M. Koyanagi, T. Fukushima, T. Tanaka, Three-dimensional integration technology and integrated systems. in 2009 Asia and South Pacific Design Automation Conference, Yokohama, Japan, 409–415 (2009).
[124] X. Wang, Y. Sun, K. Liu, Chemical and structural stability of 2D layered materials. 2D Mater. 6, 042001 (2019).
[125] Z. Hu, Q. Li, B. Lei, Q. Zhou, D. Xiang et al., Water-catalyzed oxidation of few-layer black phosphorous in a dark environment. Angew. Chem. Int. Ed. 56(31), 9131–9135 (2017).
[126] T. Kawauchi, J. Kumaki, E. Yashima, Nanosphere and nanonetwork formations of [60]fullerene-end-capped stereoregular poly(methyl methacrylate)s through stereocomplex formation combined with self-assembly of the fullerenes. J. Am. Chem. Soc. 128(32), 10560–10567 (2006).
[127] J. Ma, K.-Y. Choi, S.H. Kim, H. Lee, G. Yoo et al., All polymer encapsulated, highly-sensitive MoS2 phototransistors on flexible PAR substrate. Appl. Phys. Lett. 113(1), 013102 (2018).
[128] Y.-W. Song, M.-K. Song, D. Choi, J.-Y. Kwon, Encapsulation-enhanced switching stability of MoS2 memristors. J. Alloys Compd. 885, 161016 (2021).
[129] K. Alexandrou, N. Petrone, J. Hone, I. Kymissis, Encapsulated graphene field-effect transistors for air stable operation. Appl. Phys. Lett. 106(11), 113104 (2015).
[130] J. Jia, S.K. Jang, S. Lai, J. Xu, Y.J. Choi et al., Plasma-treated thickness-controlled two-dimensional black phosphorus and its electronic transport properties. ACS Nano 9(9), 8729–8736 (2015).
[131] Z. Li, Y. Lv, L. Ren, J. Li, L. Kong et al., Efficient strain modulation of 2D materials via polymer encapsulation. Nat. Commun. 11, 1151 (2020).
[132] W.J. Woo, I.K. Oh, B.E. Park, Y. Kim, J. Park et al., Bi-layer high-k dielectrics of Al2O3/ZrO2 to reduce damage to MoS2 channel layers during atomic layer deposition. 2D Mater. 6, 015019 (2019).
[133] Y. Liu, X. Wang, S.K. Ghosh, M. Zou, H. Zhou et al., Atomic layer deposition of lithium zirconium oxides for the improved performance of lithium-ion batteries. Dalton Trans. 51(7), 2737–2749 (2022).
[134] M.Z. Ansari, P. Janicek, Y.J. Park, S. NamGung, B.Y. Cho et al., Preparation of wafer-scale highly conformalamorphous hafnium dioxide thin films by atomic layer deposition using a thermally stable boratabenzene ligand-containing hafnium precursor. Appl. Surf. Sci. 620, 156834 (2023).
[135] N. Li, Z. Wei, J. Zhao, Q. Wang, C. Shen et al., Atomic layer deposition of Al2O3 directly on 2D materials for high-performance electronics. Adv. Mater. Interfaces 6(10), 1802055 (2019).
[136] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim et al., Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271–1275 (2010).
[137] G. Nazir, A. Rehman, S.-J. Park, Energy-efficient tunneling field-effect transistors for low-power device applications: Challenges and opportunities. ACS Appl. Mater. Interfaces 12(42), 47127–47163 (2020).
[138] C. Anichini, W. Czepa, D. Pakulski, A. Aliprandi, A. Ciesielski et al., Chemical sensing with 2D materials. Chem. Soc. Rev. 47(13), 4860–4908 (2018).
[139] M. Long, P. Wang, H. Fang, W. Hu, Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 29(19), 1803807 (2019).
[140] Q. Qian, J. Lei, J. Wei, Z. Zhang, G. Tang et al., 2D materials as semiconducting gate for field-effect transistors with inherent over-voltage protection and boosted ON-current. npj 2D Mater. Appl. 3, 24 (2019).
[141] L. Lin, L. Zhang, X. Wang, J. Liu, H. Zhao et al., Novel nanophase-switching ESD protection. IEEE Electron Device Lett. 32(3), 378–380 (2011).
[142] R. Ma, Q. Chen, W. Zhang, F. Lu, C. Wang et al., A dual-polarity graphene NEMS switch ESD protection structure. IEEE Electron Device Lett. 37(5), 674–676 (2016).
[143] H. Feng, G. Chen, R. Zhan, Q. Wu, X. Guan et al., A mixed-mode ESD protection circuit simulation-design methodology. IEEE J. Solid-State Circuits 38(6), 995–1006 (2003).
[144] L. Wang, X. Wang, Z. Shi, R. Ma, J. Liu et al., Dual-direction nanocrossbar array ESD protection structures. IEEE Electron Device Lett. 34(1), 111–113 (2013).
[145] S.-K. Su, C.-P. Chuu, M.-Y. Li, C.-C. Cheng, H.-S.P. Wong et al., Layered semiconducting 2D materials for future transistor applications. Small Struct. 2(5), 2000103 (2021).
[146] Z. Wang, W. Zhu, Tunable band alignments in 2D ferroelectric alpha-In2Se3 based van der Waals heterostructures. ACS Appl. Electron. Mater. 3(11), 5114–5123 (2021).
[147] A. Srivastava, M. Dubey, GaAs digital integrated circuits-a review from silicon point of view for designing ultra-fast VLSI circuits. in Proceedings of the 32nd Midwest Symposium on Circuits and Systems Champaign, IL, USA, 2, 1250–1254 (1989).
[148] H. Wang, L. Yu, Y.-H. Lee, W. Fang, A. Hsu et al., Large-scale 2D electronics based on single-layer MoS2 grown by chemical vapor deposition. in 2012 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 4.6.1–4.6.4 (2012).
[149] P.J. Jeon, J.S. Kim, J.Y. Lim, Y. Cho, A. Pezeshki et al., Low power consumption complementary inverters with n-MoS2 and p-WSe2 dichalcogenide nanosheets on glass for logic and light-emitting diode circuits. ACS Appl. Mater. Interfaces 7(40), 22333–22340 (2015).
[150] H. Wang, L. Yu, Y.-H. Lee, Y. Shi, A. Hsu et al., Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12(9), 4674–4680 (2012).
[151] Z. Zhang, Z. Wang, T. Shi, C. Bi, F. Rao et al., Memory materials and devices: from concept to application. Infomat 2(2), 261–290 (2020).
[152] J. Li, J. Li, Y. Ding, C. Liu, X. Hou et al., Highly area-efficient low-power SRAM cell with 2 transistors and 2 resistors. in 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 23.3.1–23.3.4 (2019).
[153] X. Wang, X. Chen, J. Ma, S. Gou, X. Guo et al., Pass-transistor logic circuits based on wafer-scale 2D semiconductors. Adv. Mater. 34(48), 2202472 (2022).
[154] F. Traversi, V. Russo, R. Sordan, Integrated complementary graphene inverter. Appl. Phys. Lett. 94(22), 223312 (2009).
[155] S.-L. Li, H. Miyazaki, A. Kumatani, A. Kanda, K. Tsukagoshi, Low operating bias and matched input-output characteristics in graphene logic inverters. Nano Lett. 10(7), 2357–2362 (2010).
[156] S.-L. Li, H. Miyazaki, M.V. Lee, C. Liu, A. Kanda et al., Complementary-like graphene logic gates controlled by electrostatic doping. Small 7(11), 1552–1556 (2011).
[157] H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu et al., An unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014).
[158] B. Radisavljevic, M.B. Whitwick, A. Kis, Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 5(12), 9934–9938 (2011).
[159] S. Das, M. Dubey, A. Roelofs, High gain, low noise, fully complementary logic inverter based on bi-layer WSe2 field effect transistors. Appl. Phys. Lett. 105(8), 083511 (2014).
[160] J. Pu, K. Funahashi, C.-H. Chen, M.-Y. Li, L.-J. Li et al., Highly flexible and high-performance complementary inverters of large-area transition metal dichalcogenide monolayers. Adv. Mater. 28(21), 4111–4119 (2016).
[161] Z. Bian, J. Miao, T. Zhang, H. Chen, Q. Zhu et al., Carrier modulation in 2D transistors by inserting interfacial dielectric layer for area-efficient computation. Small 19(26), 2206791 (2023).
[162] H. Liu, L. Chen, H. Zhu, Q.-Q. Sun, S.-J. Ding et al., Atomic layer deposited 2D MoS2 atomic crystals: from material to circuit. Nano Res. 13(6), 1644–1650 (2020).
[163] J. Yi, X. Sun, C. Zhu, S. Li, Y. Liu et al., Double-gate MoS2 field-effect transistors with full-range tunable threshold voltage for multifunctional logic circuits. Adv. Mater. 33(27), 2101036 (2021).
[164] H. Son, H. Choi, J. Jeon, Y.J. Kim, S. Choi et al., Complementary driving between 2D heterostructures and surface functionalization for surpassing binary logic devices. ACS Appl. Mater. Interfaces 13(7), 8692–8699 (2021).
[165] L. Yu, Y.-H. Lee, X. Ling, E.J.G. Santos, Y.C. Shin et al., Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett. 14(6), 3055–3063 (2014).
[166] A. Dathbun, Y. Kim, S. Kim, Y. Yoo, M.S. Kang et al., Large-area CVD-grown sub-2 V ReS2 transistors and logic gates. Nano Lett. 17(5), 2999–3005 (2017).
[167] X. Xiong, S. Liu, H. Liu, Y. Chen, X. Shi et al., Top-gate CVD WSe2 pFETs with record-high Id~594 µA/µm, Gm~244 µS/µm and WSe2/MoS2 CFET based half-adder circuit using monolithic 3D integration. in 2022 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 20.6.1–20.6.4 (2022).
[168] S.-J. Han, A.V. Garcia, S. Oida, K.A. Jenkins, W. Haensch, Graphene radio frequency receiver integrated circuit. Nat. Commun. 5, 3086 (2014).
[169] S.F. Chowdhury, M.N. Yogeesh, S.K. Banerjee, D. Akinwande, Black phosphorous thin-film transistor and RF circuit applications. IEEE Electron Device Lett. 37(4), 449–451 (2016).
[170] Q. Gao, Z. Zhang, X. Xu, J. Song, X. Li et al., Scalable high performance radio frequency electronics based on large domain bilayer MoS2. Nat. Commun. 9, 4778 (2018).
[171] S. Park, S.H. Shin, M.N. Yogeesh, A.L. Lee, S. Rahimi et al., Extremely high-frequency flexible graphene thin-film transistors. IEEE Electron Device Lett. 37(4), 512–515 (2016).
[172] S. Conti, L. Pimpolari, G. Calabrese, R. Worsley, S. Majee et al., Low-voltage 2D materials-based printed field-effect transistors for integrated digital and analog electronics on paper. Nat. Commun. 11, 3566 (2020).
[173] S. Ma, Y. Wang, X. Chen, T. Wu, X. Wang et al., Analog integrated circuits based on wafer-level two-dimensional MoS2 materials with physical and SPICE model. IEEE Access 8, 197287–197299 (2020).
[174] N.O. Adesina, A. Srivastava, A. Ullah Khan, J. Xu, An ultra-low power MoS2 tunnel field effect transistor PLL design for IoT applications. in 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Toronto, ON, Canada, 1–6 (2021).
[175] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg et al., Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9–10), 351–355 (2008).
[176] H. Wang, D. Nezich, J. Kong, T. Palacios, Graphene frequency multipliers. IEEE Electron Device Lett. 30(5), 547–549 (2009).
[177] H. Wang, A. Hsu, J. Wu, J. Kong, T. Palacios, Graphene-based ambipolar RF mixers. IEEE Electron Device Lett. 31(9), 906–908 (2010).
[178] Y. Wu, Y.-M. Lin, A.A. Bol, K.A. Jenkins, F. Xia et al., High-frequency, scaled graphene transistors on diamond-like carbon. Nature 472, 74–78 (2011).
[179] Y. Wu, K.A. Jenkins, A. Valdes-Garcia, D.B. Farmer, Y. Zhu et al., State-of-the-art graphene high-frequency electronics. Nano Lett. 12(6), 3062–3067 (2012).
[180] H. Lyu, H. Wu, J. Liu, Q. Lu, J. Zhang et al., Double-balanced graphene integrated mixer with outstanding linearity. Nano Lett. 15(10), 6677–6682 (2015).
[181] S. Das, W. Zhang, L.R. Thoutam, Z. Xiao, A. Hoffmann et al., A small signal amplifier based on ionic liquid gated black phosphorous field effect transistor. IEEE Electron Device Lett. 36(6), 621–623 (2015).
[182] W. Lu, G. Yang, N. Lu, L. Li, Recent progress in analog circuits based on two-dimensional semiconductors. J. Vac. Sci. Technol. 41(6), 501–514 (2021).
[183] H.-Y. Chang, M.N. Yogeesh, R. Ghosh, A. Rai, A. Sanne et al., Large-area monolayer MoS2 for flexible low-power RF nanoelectronics in the GHz regime. Adv. Mater. 28(9), 1818–1823 (2016).
[184] A. Sanne, S. Park, R. Ghosh, M.N. Yogeesh, C. Liu et al., Embedded gate CVD MoS2 microwave FETs. npj 2D Mater. Appl. 1, 26 (2017).
[185] D.K. Polyushkin, S. Wachter, L. Mennel, M. Paur, M. Paliy et al., Analogue two-dimensional semiconductor electronics. Nat. Electron. 3, 486–491 (2020).
[186] T. Leng, K. Parvez, K. Pan, J. Ali, D. McManus et al., Printed graphene/WS2 battery-free wireless photosensor on papers. 2D Mater. 7(2), 024004 (2020).
[187] B.J. Shastri, A.N. Tait, T.F. de Lima, W.H.P. Pernice, H. Bhaskaran et al., Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 15, 102–114 (2021).
[188] J.-A. Carballo, W.-T. J. Chan, P.A. Gargini, A.B. Kahng, S. Nath, ITRS 2.0: Toward a re-framing of the Semiconductor Technology Roadmap. in 2014 IEEE 32nd International Conference on Computer Design (ICCD), Seoul, Korea (South), 139–146 (2014).
[189] H.-C. Lin, T. Chou, C.-C. Chung, C.-J. Tsen, B.-W. Huang et al., RF performance of stacked Si nanosheet nFETs. IEEE Trans. Electron Devices 68(10), 5277–5283 (2021).
[190] F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010).
[191] N. Bourahla, B. Hadri, A. Bourahla, Impact of channel doping concentration on the performance characteristics and the reliability of ultra-thin double gate DG-FinFET compared with nano-single gate FD-SOI-MOSFET by using TCAD-Silvaco tool. SILICON 14, 3477–3491 (2022).
[192] R.W. Keyes, Fundamental limits of silicon technology. Proc. IEEE 89(3), 227–239 (2001).
[193] D. Jena, K. Banerjee, G. Xing, Intimate contacts. Nat. Mater. 13, 1076–1078 (2014).
[194] P.V. Pham, S.C. Bodepudi, K. Shehzad, Y. Liu, Y. Xu et al., 2D heterostructures for ubiquitous electronics and optoelectronics: Principles, opportunities, and challenges. Chem. Rev. 122(6), 6514–6613 (2022).
[195] L. Tong, J. Wan, K. Xiao, J. Liu, J. Ma et al., Heterogeneous complementary field-effect transistors based on silicon and molybdenum disulfide. Nat. Electron. 6, 37–44 (2023).
[196] Y. Xia, L. Zong, Y. Pan, X. Chen, L. Zhou et al., Wafer-Scale demonstration of MBC-FET and C-FET arrays based on two-dimensional semiconductors. Small 18(20), 2107650 (2022).
[197] M. Liu, J. Niu, G. Yang, K. Chen, W. Lu et al., Large-scale ultrathin channel nanosheet-stacked CFET based on CVD 1L MoS2/WSe2. Adv. Electron. Mater. 9(2), 2200722 (2023).
[198] A. Daus, S. Vaziri, V. Chen, Ç. Köroğlu, R.W. Grady et al., High-performance flexible nanoscale transistors based on transition metal dichalcogenides. Nat. Electron. 4, 495–501 (2021).
[199] Z. Li, D. Xie, R. Dai, J. Xu, Y. Sun et al., High-performance heterogeneous complementary inverters based on n-channel MoS2 and p-channel SWCNT transistors. Nano Res. 10, 276–283 (2017).
[200] H. Mertens, R. Ritzenthaler, V. Pena, G. Santoro, K. Kenis et al., Vertically stacked gate-all-around Si nanowire transistors: Key process optimizations and ring oscillator demonstration. in 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 37.4.1–37.4.4 (2017).
[201] C.J. Estrada, Z. Ma, M. Chan, Complementary two-dimensional (2-D) FET technology with MoS2/hBN/graphene stack. IEEE Electron Device Lett. 42(12), 1890–1893 (2021).
[202] R. Pendurthi, D. Jayachandran, A. Kozhakhmetov, N. Trainor, J.A. Robinson et al., Heterogeneous integration of atomically thin semiconductors for non-von Neumann CMOS. Small 18(33), 2202590 (2022).
[203] T. Dai, C. Chen, L. Huang, J. Jiang, L.-M. Peng et al., Ultrasensitive magnetic sensors enabled by heterogeneous integration of graphene hall elements and silicon processing circuits. ACS Nano 14(12), 17606–17614 (2020).
[204] S.K. Hong, C.S. Kim, W.S. Hwang, B.J. Cho, Hybrid integration of graphene analog and silicon complementary metal–oxide–semiconductor digital circuits. ACS Nano 10(7), 7142–7146 (2016).
[205] L. Xu, W. Cai, Y. Jia, R. Xing, T. Han et al., Graphene–silicon hybrid MOSFET integrated circuits for high-linearity analog amplification. IEEE Electron Device Lett. 43(11), 1886–1889 (2022).
[206] G. Migliato Marega, Y. Zhao, A. Avsar, Z. Wang, M. Tripathi et al., Logic-in-memory based on an atomically thin semiconductor. Nature 587, 72–77 (2020).
[207] Y. Zheng, H. Ravichandran, T.F. Schranghamer, N. Trainor, J.M. Redwing et al., Hardware implementation of Bayesian network based on two-dimensional memtransistors. Nat. Commun. 13, 5578 (2022).
[208] A. Dodda, N. Trainor, J.M. Redwing, S. Das, All-in-one, bio-inspired, and low-power crypto engines for near-sensor security based on two-dimensional memtransistors. Nat. Commun. 13, 3587 (2022).
[209] S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J.J. Piqueras et al., Broadband image sensor array based on graphene–CMOS integration. Nat. Photonics 11, 366–371 (2017).
[210] C.-C. Yang, K.-C. Chiu, C.-T. Chou, C.-N. Liao, M.-H. Chuang et al., Enabling monolithic 3D image sensor using large-area monolayer transition metal dichalcogenide and logic/memory hybrid 3D+IC. in 2016 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 1–2 (2016).
[211] H. Hinton, H. Jang, W. Wu, M.-H. Lee, M. Seol et al., A 200 x 256 image sensor heterogeneously integrating a 2D nanomaterial-based photo-FET array and CMOS time-to-digital converters. in 2022 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, CA, USA, 1–3 (2022).
[212] W. Meng, F. Xu, Z. Yu, T. Tao, L. Shao et al., Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nat. Nanotechnol. 16, 1231–1236 (2021).
[213] J. Shin, H. Kim, S. Sundaram, J. Jeong, B.-I. Park et al., Vertical full-colour micro-LEDs via 2D materials-based layer transfer. Nature 614, 81–87 (2023).
[214] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8(7), 497–501 (2013).
[215] J.F. Gonzalez Marin, D. Unuchek, K. Watanabe, T. Taniguchi, A. Kis, MoS2 photodetectors integrated with photonic circuits. npj 2D Mater. Appl. 3, 14 (2019).
[216] T.N. Theis, H.-S.P. Wong, The end of Moore’s law: A new beginning for information technology. Comput. Sci. Eng. 19(2), 41–50 (2017).
[217] Y. Liu, J. Sun, L. Tong, Y. Li, T. Deng, High-performance one-dimensional MOSFET array photodetectors in the 0.8-μm standard CMOS process. Opt. Express 30(24), 43706–43717 (2022).
[218] M.M. Shulaker, G. Hills, R.S. Park, R.T. Howe, K. Saraswat et al., Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547, 74–78 (2017).
[219] S.R. Cho, D.-H. Kim, M. Jeon, R. Pragya, M. Gyeon et al., Overlaying monolayer metal-organic framework on PtSe2-based gas sensor for tuning selectivity. Adv. Funct. Mater. 32(47), 2207265 (2022).
[220] A. Paghi, S. Mariani, G. Barillaro, 1D and 2D field effect transistors in gas sensing: A comprehensive review. Small 19(15), 2206100 (2023).
[221] C. Dai, Y. Liu, D. Wei, Two-dimensional field-effect transistor sensors: the road toward commercialization. Chem. Rev. 122(11), 10319–10392 (2022).
[222] C.-Y. You, B.-F. Hu, B.-R. Xu, Z.-Y. Zhang, B.-M. Wu et al., Foldable-circuit-enabled miniaturized multifunctional sensor for smart digital dust. Chip 1(4), 100034 (2022).
[223] Y. Luo, M.R. Abidian, J.H. Ahn, D. Akinwande, A.M. Andrews et al., Technology roadmap for flexible sensors. ACS Nano 17(6), 5211–5295 (2023).
[224] B. Davaji, H.D. Cho, M. Malakoutian, J.K. Lee, G. Panin et al., A patterned single layer graphene resistance temperature sensor. Sci. Rep. 7, 8811 (2017).
[225] A. Harzheim, F. Koenemann, B. Gotsmann, H. van der Zant, P. Gehring, Single-material graphene thermocouples. Adv. Funct. Mater. 30(22), 2000574 (2020).
[226] A.M.H. Kwan, Y. Guan, X. Liu, K.J. Chen, A highly linear integrated temperature sensor on a GaN smart power IC platform. IEEE Trans. Electron Devices 61(8), 2970–2976 (2014).
[227] L. Viti, E. Riccardi, H.E. Beere, D.A. Ritchie, M.S. Vitiello, Real-time measure of the lattice temperature of a semiconductor heterostructure laser via an on-chip integrated graphene thermometer. ACS Nano 17(6), 6103–6112 (2023).
[228] A. Daus, M. Jaikissoon, A.I. Khan, A. Kumar, R.W. Grady et al., Fast-response flexible temperature sensors with atomically thin molybdenum disulfide. Nano Lett. 22(15), 6135–6140 (2022).
[229] Y.J. Park, B.K. Sharma, S.M. Shinde, M.S. Kim, B. Jang et al., All MoS2-based large area, skin-attachable active-matrix tactile sensor. ACS Nano 13(3), 3023–3030 (2019).
[230] J. Jang, H. Kim, S. Ji, H.J. Kim, M.S. Kang et al., Mechanoluminescent, air-dielectric MoS2 transistors as active-matrix pressure sensors for wide detection ranges from footsteps to cellular motions. Nano Lett. 20(1), 66–74 (2020).
[231] M. Siskins, M. Lee, D. Wehenkel, R. van Rijn, T.W. de Jong et al., Sensitive capacitive pressure sensors based on graphene membrane arrays. Microsyst. Nanoeng. 6, 102 (2020).
[232] S. Zeng, C. Tang, H. Hong, Y. Fang, Y. Li et al., A novel high-temperature pressure sensor based on graphene coated by Si3N4. IEEE Sens. J. 23(3), 2008–2013 (2023).
[233] Z. Zhu, J. Wang, C. Wu, X. Chen, X. Liu et al., A wide range and high repeatability MEMS pressure sensor based on graphene. IEEE Sens. J. 22(18), 17737–17745 (2022).
[234] L. Zhou, H. Fu, T. Lv, C. Wang, H. Gao et al., Nonlinear optical characterization of 2D materials. Nanomaterials 10(11), 2263 (2020).
[235] J. Zhao, G. Wang, R. Yang, X. Lu, M. Cheng et al., Tunable piezoresistivity of nanographene films for strain sensing. ACS Nano 9(2), 1622–1629 (2015).
[236] Y. Zhang, Q. Lu, J. He, Z. Huo, R. Zhou et al., Localizing strain via micro-cage structure for stretchable pressure sensor arrays with ultralow spatial crosstalk. Nat. Commun. 14, 1252 (2023).
[237] T. Zhao, J. Guo, T. Li, Z. Wang, M. Peng et al., Substrate engineering for wafer-scale two-dimensional material growth: strategies, mechanisms, and perspectives. Chem. Soc. Rev. 52(5), 1650–1671 (2023).
[238] S. Hong, N. Zagni, S. Choo, N. Liu, S. Baek et al., Highly sensitive active pixel image sensor array driven by large-area bilayer MoS2 transistor circuitry. Nat. Commun. 12, 3559 (2021).
[239] S. Ma, T. Wu, X. Chen, Y. Wang, J. Ma et al., A 619-pixel machine vision enhancement chip based on two-dimensional semiconductors. Sci. Adv. 8(31), eabn9328 (2022).
[240] W. Yu, Z. Dong, H. Mu, G. Ren, X. He et al., Wafer-scale synthesis of 2D Dirac heterostructures for self-driven, fast, broadband photodetectors. ACS Nano 16(8), 12922–12929 (2022).
[241] H. Park, A. Sen, M. Kaniselvan, A. AlMutairi, A. Bala et al., A wafer-scale nanoporous 2D active pixel image sensor matrix with high uniformity, high sensitivity, and rapid switching. Adv. Mater. 35(14), 2210715 (2023).
[242] Z. Li, B. Xu, D. Liang, A. Pan, Polarization-dependent optical properties and optoelectronic devices of 2D materials. Research2020, 5464258 (2020).
[243] Y. Li, Y. Zhang, Y. Wang, J. Sun, Q. You et al., Polarization-sensitive optoelectronic synapse based on 3D graphene/MoS2 heterostructure. Adv. Funct. Mater. (2023).
[244] C.N. Saggau, F. Gabler, D.D. Karnaushenko, D. Karnaushenko, L. Ma et al., Wafer-scale high-quality microtubular devices fabricated via dry-etching for optical and microelectronic applications. Adv. Mater. 32(37), 2003252 (2020).
[245] X. Liu, T. Ma, N. Pinna, J. Zhang, Two-dimensional nanostructured materials for gas sensing. Adv. Funct. Mater. 27(37), 1702168 (2017).
[246] S. Kim, H. Park, S. Choo, S. Baek, Y. Kwon et al., Active-matrix monolithic gas sensor array based on MoS2 thin-film transistors. Commun. Mater. 1, 86 (2020).
[247] J. Sun, M. Muruganathan, H. Mizuta, Room temperature detection of individual molecular physisorption using suspended bilayer graphene. Sci. Adv. 2(4), 1501518 (2016).
[248] S.M.M. Zanjani, M. Holt, M.M. Sadeghi, S. Rahimi, D. Akinwande, 3D integrated monolayer graphene-Si CMOS RF gas sensor platform. npj 2D Mater. Appl. 1, 36 (2017).
[249] H. Li, S. Liu, X. Li, R. Hao, X. Wang et al., All-Solid, ultra-micro, and ultrasensitive pH sensor by monolayer MoS2-based array field-effect transistors. ACS Appl. Nano Mater. 4(9), 8950–8957 (2021).
[250] T. Deng, Z. Zhang, Y. Zhang, Y. Li, Z. Liu, Three-dimensional graphene FETs for pH detection. in 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Xiamen, China, 68–72 (2021).
[251] C. Panteli, P. Georgiou, K. Fobelets, Reduced drift of CMOS ISFET pH sensors using graphene sheets. IEEE Sens. J. 21(13), 14609–14618 (2021).
[252] M. Park, T.S. Seo, An integrated microfluidic device with solid-phase extraction and graphene oxide quantum dot array for highly sensitive and multiplex detection of trace metal ions. Biosens. Bioelectron. 126, 405–411 (2019).
[253] A. Chalupniak, A. Merkoci, Graphene oxide-poly(dinnethylsiloxane)-based lab-on-a-chip platform for heavy-metals preconcentration and electrochemical detection. ACS Appl. Mater. Interfaces 9(51), 44766–44775 (2017).
[254] M. Xue, C. Mackin, W. Weng, J. Zhu, Y. Luo et al., Integrated biosensor platform based on graphene transistor arrays for real-time high-accuracy ion sensing. Nat. Commun. 13, 5064 (2022).
[255] A. Bolotsky, D. Butler, C. Dong, K. Gerace, N.R. Glayin et al., Two-dimensional materials in biosensing and healthcare: From in vitro diagnostics to optogenetics and beyond. ACS Nano 13(9), 9781–9810 (2019).
[256] D.K. Ban, Y. Liu, Z. Wang, S. Ramachandran, N. Sarkar et al., Direct DNA methylation profiling with an electric biosensor. ACS Nano 14(6), 6743–6751 (2020).
[257] F. Pu, J. Ren, X. Qu, Recent progress in sensor arrays using nucleic acid as sensing elements. Coord. Chem. Rev. 456, 214379 (2022).
[258] A. Purwidyantri, S. Azinheiro, A. Garcia Roldan, T. Jaegerova, A. Vilaca et al., Integrated approach from sample-to-answer for grapevine varietal identification on a portable graphene sensor chip. ACS Sens. 8(2), 640–654 (2023).
[259] C. Zheng, L. Huang, H. Zhang, Z. Sun, Z. Zhang et al., Fabrication of ultrasensitive field-effect transistor DNA biosensors by a directional transfer technique based on CVD-grown graphene. ACS Appl. Mater. Interfaces 7(31), 16953–16959 (2015).
[260] L. Xu, S. Ramadan, B.G. Rosa, Y. Zhang, T. Yin et al., On-chip integrated graphene aptasensor with portable readout for fast and label-free COVID-19 detection in virus transport medium. Sens. Diagn. 1(4), 719–730 (2022).
[261] J. Kim, M.-S. Chae, S.M. Lee, D. Jeong, B.C. Lee et al., Wafer-scale high-resolution patterning of reduced graphene oxide films for detection of low concentration biomarkers in plasma. Sci. Rep. 6, 31276 (2016).
[262] C. Wang, Y. Zhang, W. Tang, C. Wang, Y. Han et al., Ultrasensitive, high-throughput and multiple cancer biomarkers simultaneous detection in serum based on graphene oxide quantum dots integrated microfluidic biosensing platform. Anal. Chim. Acta 1178, 338791 (2021).
[263] Y. Wang, T.H. Kim, S. Fouladdel, Z. Zhang, P. Soni et al., PD-L1 expression in circulating tumor cells increases during radio (chemo) therapy and indicates poor prognosis in non-small cell lung cancer. Sci. Rep. 9, 566 (2019).
[264] B.R. Goldsmith, L. Locascio, Y. Gao, M. Lerner, A. Walker et al., Digital biosensing by foundry-fabricated graphene sensors. Sci. Rep. 9, 434 (2019).
[265] D. Shahdeo, N. Chauhan, A. Majumdar, A. Ghosh, S. Gandhi, Graphene-based field-effect transistor for ultrasensitive immunosensing of SARS-CoV-2 spike S1 antigen. ACS Appl. Bio Mater. 5(7), 3563–3572 (2022).
[266] N. Gupta, V. Renugopalakrishnan, D. Liepmann, R. Paulmurugan, B.D. Malhotra, Cell-based biosensors: Recent trends, challenges and future perspectives. Biosens. Bioelectron. 141, 111435 (2019).
[267] J. Yang, G. Li, L. Zu, W. Wang, Z. Ge et al., Optogenetically engineered cell-based graphene transistor for pharmacodynamic evaluation of anticancer drugs. Sens. Actuators B Chem. 358, 131494 (2022).
[268] D. Ozsoylu, T. Wagner, M.J. Schoning, Electrochemical cell-based biosensors for biomedical applications. Curr. Top. Med. Chem. 22(9), 713–733 (2022).
[269] D. Ham, H. Park, S. Hwang, K. Kim, Neuromorphic electronics based on copying and pasting the brain. Nat. Electron. 4(9), 635–644 (2021).
[270] H. Song, H. Wu, T. Ren, S. Yan, T. Chen et al., Developments in stability and passivation strategies for black phosphorus. Nano Res. 14(12), 4386–4397 (2021).
[271] Y. Song, W. Zou, Q. Lu, L. Lin, Z. Liu, Graphene transfer: Paving the road for applications of chemical vapor deposition graphene. Small 17(48), 2007600 (2021).
[272] X. Yang, J. Li, R. Song, B. Zhao, J. Tang et al., Highly reproducible van der Waals integration of two-dimensional electronics on the wafer scale. Nat. Nanotechnol. 18, 471–478 (2023).
[273] L. Liu, P. Gong, K. Liu, A. Nie, Z. Liu et al., Scalable van der Waals encapsulation by inorganic molecular crystals. Adv. Mater. 34(7), 2106041 (2022).
[274] C. Choi, M.K. Choi, S.Y. Liu, M.S. Kim, O.K. Park et al., Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 8, 1664 (2017).
[275] W.A. Wulf, S.A. McKee, Hitting the memory wall: implications of the obvious. ACMSIGARCH. 23(1), 20–24 (1995).
[276] M. Horowitz, 1.1 Computing's energy problem (and what we can do about it). in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 10–14 (2014).
[277] V.M. Ho, J.-A. Lee, K.C. Martin, The cell biology of synaptic plasticity. Science 334(6056), 623–628 (2011).
[278] Y. Zhu, Y. Zhu, H. Mao, Y. He, S. Jiang et al., Recent advances in emerging neuromorphic computing and perception devices. J. Phys. D Appl. Phys. 55(5), 053002 (2021).
[279] X. Zhou, L. Zhao, W. Zhen, Y. Lin, C. Wang et al., Phase-transition-induced VO2 thin film IR photodetector and threshold switching selector for optical neural network applications. Adv. Electron. Mater. 7(5), 2001254 (2021).
[280] W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943).
[281] L. Chua, Memristor-The missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971).
[282] A.A. Cruz-Cabrera, M. Yang, G. Cui, E.C. Behrman, J.E. Steck et al., Reinforcement and backpropagation training for an optical neural network using self-lensing effects. IEEE Trans. Neural Netw. 11(6), 1450–1457 (2000).
[283] D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008).
[284] M.S. Choi, G.-H. Lee, Y.-J. Yu, D.-Y. Lee, S.H. Lee et al., Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun. 4, 1624 (2013).
[285] S. Lei, F. Wen, B. Li, Q. Wang, Y. Huang et al., Optoelectronic memory using two-dimensional materials. Nano Lett. 15(1), 259–265 (2015).
[286] V.K. Sangwan, D. Jariwala, I.S. Kim, K.-S. Chen, T.J. Marks et al., Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nat. Nanotechnol. 10, 403–406 (2015).
[287] J. Lee, S. Pak, Y.-W. Lee, Y. Cho, J. Hong et al., Monolayer optical memory cells based on artificial trap-mediated charge storage and release. Nat. Commun. 8, 14734 (2017).
[288] R. Ge, X. Wu, M. Kim, J. Shi, S. Sonde et al., Atomristor: Nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides. Nano Lett. 18(1), 434–441 (2018).
[289] S. Seo, S.-H. Jo, S. Kim, J. Shim, S. Oh et al., Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 9, 5106 (2018).
[290] L. Sun, Y. Zhang, G. Han, G. Hwang, J. Jiang et al., Self-selective van der Waals heterostructures for large scale memory array. Nat. Commun. 10, 3161 (2019).
[291] S. Chen, M.R. Mahmoodi, Y. Shi, C. Mahata, B. Yuan et al., Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks. Nat. Electron. 3, 638–645 (2020).
[292] M.M. Islam, D. Dev, A. Krishnaprasad, L. Tetard, T. Roy, Optoelectronic synapse using monolayer MoS2 field effect transistors. Sci. Rep. 10, 21870 (2020).
[293] B. Tang, H. Veluri, Y. Li, Z.G. Yu, M. Waqar et al., Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing. Nat. Commun. 13, 3037 (2022).
[294] Y. Hu, H. Yang, J. Huang, X. Zhang, B. Tan et al., Flexible optical synapses based on In2Se3/MoS2 heterojunctions for artificial vision systems in the near-infrared range. ACS Appl. Mater. Interfaces 14(50), 55839–55849 (2022).
[295] K. Zhu, S. Pazos, F. Aguirre, Y. Shen, Y. Yuan et al., Hybrid 2D-CMOS microchips for memristive applications. Nature 618, 57–62 (2023).
[296] F. Wang, F. Hu, M. Dai, S. Zhu, F. Sun et al., A two-dimensional mid-infrared optoelectronic retina enabling simultaneous perception and encoding. Nat. Commun. 14, 1938 (2023).
[297] Y. Xiao, B. Jiang, Z. Zhang, S. Ke, Y. Jin et al., A review of memristor: material and structure design, device performance, applications and prospects. Sci. Technol. Adv. Mater. 24(1), 2162323 (2023).
[298] K.C. Kwon, J.H. Baek, K. Hong, S.Y. Kim, H.W. Jang, Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing. Nano-Micro Lett. 14, 58 (2022).
[299] L. Liu, Z. Cheng, B. Jiang, Y. Liu, Y. Zhang et al., Optoelectronic artificial synapses based on two-dimensional transitional-metal trichalcogenide. ACS Appl. Mater. Inter. 13(26), 30797–30805 (2021).
[300] S. Seo, J.-J. Lee, H.-J. Lee, H.W. Lee, S. Oh et al., Recent progress in artificial synapses based on two-dimensional van der Waals materials for brain-inspired computing. ACS Appl. Electron. Mater. 2(2), 371–388 (2020).
[301] S. Yu, Neuro-inspired computing with emerging nonvolatile memorys. Proc. IEEE 106(2), 260–285 (2018).
[302] H. Ning, Z. Yu, Q. Zhang, H. Wen, B. Gao et al., An in-memory computing architecture based on a duplex two-dimensional material structure for in situ machine learning. Nat. Nanotechnol. 18, 493–500 (2023).
[303] Y. Chen, Y. Zhou, F. Zhuge, B. Tian, M. Yan et al., Graphene–ferroelectric transistors as complementary synapses for supervised learning in spiking neural network. npj 2D Mater. Appl. 3, 31 (2019).
[304] H.S. Lee, V.K. Sangwan, W.A.G. Rojas, H. Bergeron, H.Y. Jeong et al., Dual-gated MoS2 memtransistor crossbar array. Adv. Funct. Mater. 30(45), 2003683 (2020).
[305] X. Feng, S. Li, S.L. Wong, S. Tong, L. Chen et al., Self-Selective multi-terminal memtransistor crossbar array for in-memory computing. ACS Nano 15(1), 1764–1774 (2021).
[306] C.-H. Wang, C. McClellan, Y. Shi, X. Zheng, V. Chen et al., 3D monolithic stacked 1T1R cells using monolayer MoS2 FET and hBN RRAM fabricated at low (150°C) temperature. in 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 22.5.1–22.5.4 (2018).
[307] S. Rehman, M.F. Khan, S. Aftab, H. Kim, J. Eom et al., Thickness-dependent resistive switching in black phosphorus CBRAM. J. Mater. Chem. C 7(3), 725–732 (2019).
[308] Y. Wang, F. Wu, X. Liu, J. Lin, J.-Y. Chen et al., High on/off ratio black phosphorus based memristor with ultra-thin phosphorus oxide layer. Appl. Phys. Lett. 115(19), 193503 (2019).
[309] R. Duan, D. Meng, J. Cao, α-In2Se3/MoS2 ferroelectric tunnel junctions based on van der Waals heterostructures. in 2022 3rd International Conference on Electronics, Communications and Information Technology (CECIT), Sanya, China, 13–18 (2022).
[310] D. Zheng, M. Si, S.-C. Chang, N. Haratipour, Z. Chen et al., Ultrathin two-dimensional van der Waals asymmetric ferroelectric semiconductor junctions. J. Appl. Phys. 132(5), 054101 (2022).
[311] Y. Zhang, L. Wang, H. Chen, T. Ma, X. Lu et al., Analog and digital mode α-In2Se3 memristive devices for neuromorphic and memory applications. Adv. Electron. Mater. 7(12), 2100609 (2021).
[312] S. Wang, L. Liu, L. Gan, H. Chen, X. Hou et al., Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing. Nat. Commun. 12, 53 (2021).
[313] W. Huh, D. Lee, C.H. Lee, Memristors based on 2D materials as an artificial synapse for neuromorphic electronics. Adv. Mater. 32(51), 2002092 (2020).
[314] Y. Shi, X. Liang, B. Yuan, V. Chen, H. Li et al., Electronic synapses made of layered two-dimensional materials. Nat. Electron. 1, 458–465 (2018).
[315] S.M. Hus, R. Ge, P.-A. Chen, L. Liang, G.E. Donnelly et al., Observation of single-defect memristor in an MoS2 atomic sheet. Nat. Nanotechnol. 16, 58–62 (2020).
[316] L. Chua, Resistance switching memories are memristors. Appl. Phys. A 102(4), 765–783 (2011).
[317] I.T. Wang, C.C. Chang, Y.Y. Chen, Y.S. Su, T.H. Hou, Two-dimensional materials for artificial synapses: toward a practical application. Neuromorph. Comput. Eng. 2, 012003 (2022).
[318] G.V. Nenashev, A.N. Aleshin, I.P. Shcherbakov, V.N. Petrov, Effect of temperature variations on the behavior of a two-terminal organic–inorganic halide perovskite rewritable memristor for neuromorphic operations. Solid State Commun. 348–349, 114768 (2022).
[319] H.-L. Park, T.-W. Lee, Organic and perovskite memristors for neuromorphic computing. Org. Electron. 98, 106301 (2021).
[320] M. Zeng, Y. He, C. Zhang, Q. Wan, Neuromorphic devices for bionic sensing and perception. Front. Neurosci. 15, 690950 (2021).
[321] S. Hamdioui, S. Kvatinsky, G. Cauwenberghs, L. Xie, N. Wald et al., Memristor for computing: Myth or reality? in Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland, 722–731 (2017).
[322] R. Xu, H. Jang, M.H. Lee, D. Amanov, Y. Cho et al., Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV. Nano Lett. 19(4), 2411–2417 (2019).
[323] X. Yan, Q. Zhao, A.P. Chen, J. Zhao, Z. Zhou et al., Vacancy-induced synaptic behavior in 2D WS2 nanosheet-based memristor for low-power neuromorphic computing. Small 15(24), 1901423 (2019).
[324] F. Zhang, H. Zhang, S. Krylyuk, C.A. Milligan, Y. Zhu et al., Electric-field induced structural transition in vertical MoTe2- and Mo1-xWxTe2-based resistive memories. Nat. Mater. 18, 55–61 (2019).
[325] Y. Li, S. Long, Q. Liu, H. Lv, M. Liu, Resistive switching performance improvement via modulating nanoscale conductive filament, involving the application of two-dimensional layered materials. Small 13(35), 1604306 (2017).
[326] A. Melianas, M.A. Kang, A. VahidMohammadi, T.J. Quill, W. Tian et al., High-speed ionic synaptic memory based on 2D titanium carbide MXene. Adv. Funct. Mater. 32(12), 2109970 (2021).
[327] T. Paul, T. Ahmed, K. Kanhaiya Tiwari, C. Singh Thakur, A. Ghosh, A high-performance MoS2 synaptic device with floating gate engineering for neuromorphic computing. 2D Mater. 6(4), 045008 (2019).
[328] G. Cao, P. Meng, J. Chen, H. Liu, R. Bian et al., 2D material based synaptic devices for neuromorphic computing. Adv. Funct. Mater. 31(4), 2005443 (2020).
[329] C. Tian, L. Wei, Y. Li, J. Jiang, Recent progress on two-dimensional neuromorphic devices and artificial neural network. Curr. Appl. Phys. 31, 182–198 (2021).
[330] L. Chen, L. Wang, Y. Peng, X. Feng, S. Sarkar et al., A van der Waals synaptic transistor based on ferroelectric Hf0.5Zr0.5O2 and 2D tungsten disulfide. Adv. Electron. Mater. 6(6), 2000057 (2020).
[331] X. Feng, Y. Li, L. Wang, S. Chen, Z.G. Yu et al., A fully printed flexible MoS2 memristive artificial synapse with femtojoule switching energy. Adv. Electron. Mater. 5(12), 1900740 (2019).
[332] B. Yao, J. Li, X. Chen, M. Yu, Z. Zhang et al., Non-volatile electrolyte-gated transistors based on graphdiyne/MoS2 with robust stability for low-power neuromorphic computing and logic-in-memory. Adv. Funct. Mater. 31(25), 2100069 (2021).
[333] Y. Wang, H. Tang, Y. Xie, X. Chen, S. Ma et al., An in-memory computing architecture based on two-dimensional semiconductors for multiply-accumulate operations. Nat. Commun. 12, 3347 (2021).
[334] S. Xue, S. Wang, T. Wu, Z. Di, N. Xu et al., Hybrid neuromorphic hardware with sparing 2D synapse and CMOS neuron for character recognition. Sci. Bull. 68(20), 2336–2343 (2023).
[335] C. Wan, Z. Wang, R.A. John, Editorial: in-memory sensing and computing: New materials and devices meet new challenges. Front. Nanotechnol. 4, 1073863 (2022).
[336] H. Bao, H. Zhou, J. Li, H. Pei, J. Tian et al., Toward memristive in-memory computing: principles and applications. Front. Optoelectron. 15, 23 (2022).
[337] S.W. Cho, C. Jo, Y.H. Kim, S.K. Park, Progress of materials and devices for neuromorphic vision sensors. Nano-Micro Lett. 14, 203 (2022).
[338] J. Meng, T. Wang, H. Zhu, L. Ji, W. Bao et al., Integrated in-sensor computing optoelectronic device for environment-adaptable artificial retina perception application. Nano Lett. 22(1), 81–89 (2022).
[339] D. Lee, M. Park, Y. Baek, B. Bae, J. Heo et al., In-sensor image memorization and encoding via optical neurons for bio-stimulus domain reduction toward visual cognitive processing. Nat. Commun. 13, 5223 (2022).
[340] W. Chen, G. Liu, Intelligent optoelectronic devices for next-generation artificial machine vision. Adv. Electron. Mater. 8(12), 2200668 (2022).
[341] C. Yoo, T.-J. Ko, M.G. Kaium, R. Martinez, M.M. Islam et al., A minireview on 2D materials-enabled optoelectronic artificial synaptic devices. APL Mater. 10(7), 070702 (2022).
[342] Y. Sun, Y. Ding, D. Xie, Mixed‐dimensional van der Waals heterostructures enabled optoelectronic synaptic devices for neuromorphic applications. Adv. Funct. Mater. 31(47), (2021).
[343] M.M. Islam, A. Krishnaprasad, D. Dev, R. Martinez-Martinez, V. Okonkwo et al., Multiwavelength optoelectronic synapse with 2D materials for mixed-color pattern recognition. ACS Nano 16(7), 10188–10198 (2022).
[344] T. Tan, X. Jiang, C. Wang, B. Yao, H. Zhang, 2D material optoelectronics for information functional device applications: status and challenges. Adv. Sci. 7(11), 2000058 (2020).
[345] S. Oh, J.-J. Lee, S. Seo, G. Yoo, J.-H. Park, Photoelectroactive artificial synapse and its application to biosignal pattern recognition. npj 2D Mater. Appl.5(1), (2021).
[346] Y. Sun, M. Li, Y. Ding, H. Wang, H. Wang et al., Programmable van‐der‐Waals heterostructure‐enabled optoelectronic synaptic floating‐gate transistors with ultra‐low energy consumption. InfoMat4(10), (2022).
[347] A. Lipatov, T. Li, N.S. Vorobeva, A. Sinitskii, A. Gruverman, Nanodomain engineering for programmable ferroelectric devices. Nano Lett. 19(5), 3194–3198 (2019).
[348] Z.D. Luo, X. Xia, M.M. Yang, N.R. Wilson, A. Gruverman et al., Artificial optoelectronic synapses based on ferroelectric field-effect enabled 2D transition metal dichalcogenide memristive transistors. ACS Nano 14(1), 746–754 (2020).
[349] Y.X. Hou, Y. Li, Z.C. Zhang, J.Q. Li, D.H. Qi et al., Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing. ACS Nano 15(1), 1497–1508 (2020).
[350] F. Zhou, J. Chen, X. Tao, X. Wang, Y. Chai, 2D materials based optoelectronic memory: Convergence of electronic memory and optical sensor. Research2019, 9490413 (2019).
[351] C. Choi, J. Leem, M. Kim, A. Taqieddin, C. Cho et al., Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat. Commun. 11, 5934 (2020).
[352] S. Wang, C.Y. Wang, P. Wang, C. Wang, Z.A. Li et al., Networking retinomorphic sensor with memristive crossbar for brain-inspired visual perception. Natl. Sci. Rev. 8(2), nwaa172 (2021).
[353] S. Lee, R. Peng, C. Wu, M. Li, Programmable black phosphorus image sensor for broadband optoelectronic edge computing. Nat. Commun. 13, 1485 (2022).
[354] M. Titov, C.W.J. Beenakker, Josephson effect in ballistic graphene. Phys. Rev. B 74(4), 041401 (2006).
[355] B. Trauzettel, D.V. Bulaev, D. Loss, G. Burkard, Spin qubits in graphene quantum dots. Nat. Phys. 3, 192–196 (2007).
[356] C. Girit, V. Bouchiat, O. Naaman, Y. Zhang, M. Crommie et al., Tunable graphene dc superconducting quantum interference device. Nano Lett. 9(1), 198–199 (2009).
[357] M.T. Allen, J. Martin, A. Yacoby, Gate-defined quantum confinement in suspended bilayer graphene. Nat. Commun. 3, 934 (2012).
[358] J.I.J. Wang, D. Rodan-Legrain, L. Bretheau, D.L. Campbell, B. Kannan et al., Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures. Nat. Nanotechnol. 14, 120–125 (2019).
[359] Y.M. He, G. Clark, J.R. Schaibley, Y. He, M.C. Chen et al., Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10(6), 497–502 (2015).
[360] C. Palacios-Berraquero, D.M. Kara, A.R.-P. Montblanch, M. Barbone, P. Latawiec et al., Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. 8, 15093 (2017).
[361] F. Peyskens, C. Chakraborty, M. Muneeb, D. Van Thourhout, D. Englund, Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip. Nat. Commun. 10, 4435 (2019).
[362] T. Gao, M. von Helver, C. Antón-Solanas, C. Schneider, T. Heindel, Atomically-thin single-photon sources for quantum communication. npj 2D Mater. Appl. 7, 4 (2023).
[363] A. Gottscholl, M. Kianinia, V. Soltamov, S. Orlinskii, G. Mamin et al., Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature. Nat. Mater. 19, 540–545 (2020).
[364] A. Gottscholl, M. Diez, V. Soltamov, C. Kasper, D. Krauße et al., Spin defects in hBN as promising temperature, pressure and magnetic field quantum sensors. Nat. Commun. 12, 4480 (2021).
[365] A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109 (2009).
[366] J. Chen, K. Wu, W. Hu, J. Yang, High-throughput inverse design for 2D ferroelectric Rashba semiconductors. J. Am. Chem. Soc. 144(43), 20035–20046 (2022).
[367] Y. Xu, Y. Wang, S. Wang, S. Yu, B. Huang et al., Spontaneous valley polarization caused by crystalline symmetry breaking in nonmagnetic LaOMX2 monolayers. Nano Lett. 22(22), 9147–9153 (2022).
[368] E.J. Sie, J.W. McIver, Y.H. Lee, L. Fu, J. Kong et al., Valley-selective optical Stark effect in monolayer WS2. Nat. Mater. 14, 290–294 (2015).
[369] G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi et al., Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2. Phys. Rev. B 90(7), 075413 (2014).
[370] J.Y. Tsai, J. Pan, H. Lin, A. Bansil, Q. Yan, Antisite defect qubits in monolayer transition metal dichalcogenides. Nat. Commun. 13, 492 (2022).
[371] S. Kezilebieke, M.N. Huda, V. Vaňo, M. Aapro, S.C. Ganguli et al., Topological superconductivity in a van der Waals heterostructure. Nature 588, 424–428 (2020).
[372] E. Zhang, Y.M. Xie, Y. Fang, J. Zhang, X. Xu et al., Spin–orbit–parity coupled superconductivity in atomically thin 2M-WS2. Nat. Phys. 19(1), 106–113 (2023).
[373] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).
[374] Y. Li, H. Zheng, Y. Fang, D. Zhang, Y. Chen et al., Observation of topological superconductivity in a stoichiometric transition metal dichalcogenide 2M-WS2. Nat. Commun. 12, 2874 (2021).
[375] S. Lodge, S.A. Yang, S. Mukherjee, B. Weber, Atomically thin quantum spin hall insulators. Adv. Mater. 33(22), 2008029 (2021).
[376] D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. den Nijs, Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49(6), 405 (1982).
[377] D.M. Haldane, Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly.” Phys. Rev. Lett. 61(18), 2015 (1988).
[378] Z. Qiao, W. Ren, H. Chen, L. Bellaiche, Z. Zhang et al., Quantum anomalous Hall effect in graphene proximity coupled to an antiferromagnetic insulator. Phys. Rev. Lett. 112(11), 116404 (2014).
[379] L. Veyrat, C. Déprez, A. Coissard, X. Li, F. Gay et al., Helical quantum Hall phase in graphene on SrTiO3. Science 367(6479), 781–786 (2020).
[380] Y.T. Hsu, W.S. Cole, R.X. Zhang, J.D. Sau, Inversion-protected higher-order topological superconductivity in monolayer WTe2. Phys. Rev. Lett. 125(9), 097001 (2020).
[381] E. Sajadi, T. Palomaki, Z. Fei, W. Zhao, P. Bement et al., Gate-induced superconductivity in a monolayer topological insulator. Science 362(6417), 922–925 (2018).
[382] S. Wu, V. Fatemi, Q.D. Gibson, K. Watanabe, T. Taniguchi et al., Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359(6371), 76–79 (2018).
[383] A. Kormányos, V. Zólyomi, N.D. Drummond, G. Burkard, Spin-orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides. Phys. Rev. X 4, 011034 (2014).
[384] A.J. Ramsay, R. Hekmati, C.J. Patrickson, S. Baber, D.R. Arvidsson-Shukur et al., Coherence protection of spin qubits in hexagonal boron nitride. Nat. Commun. 14, 461 (2023).
[385] M.B. Shalom, M.J. Zhu, V.I. Fal’Ko, A. Mishchenko, A.V. Kretinin et al., Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene. Nat. Phys.12, 318–322 (2016).
[386] T. Machida, Y. Sun, S. Pyon, S. Takeda, Y. Kohsaka et al., Zero-energy vortex bound state in the superconducting topological surface state of Fe (Se, Te). Nat. Mater. 18(8), 811–815 (2019).
[387] D. Wang, L. Kong, P. Fan, H. Chen, S. Zhu et al., Evidence for Majorana bound states in an iron-based superconductor. Science 362(6412), 333–335 (2018).
[388] Y.M. He, O. Iff, N. Lundt, V. Baumann, M. Davanco et al., Cascaded emission of single photons from the biexciton in monolayered WSe2. Nat. Commun. 7, 13409 (2016).
[389] J. Wang, H. Li, Y. Ma, M. Zhao, W. Liu et al., Routing valley exciton emission of a WS2 monolayer via delocalized Bloch modes of in-plane inversion-symmetry-broken photonic crystal slabs. Light Sci. Appl. 9, 148 (2020).
[390] J. Dang, S. Sun, X. Xie, Y. Yu, K. Peng et al., Identifying defect-related quantum emitters in monolayer WSe2. npj 2D Mater. Appl. 4, 2 (2020).
[391] T.T. Tran, K. Bray, M.J. Ford, M. Toth, I. Aharonovich, Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11, 37–41 (2016).
[392] Q. Guo, X. Qi, L. Zhang, M. Gao, S. Hu et al., Ultrathin quantum light source with van der Waals NbOCl2 crystal. Nature 613(7942), 53–59 (2023).
[393] X. Lu, Single photon emitters originating from donor–acceptor pairs. J. Semicond. 44(1), 010401 (2023).
[394] C. Déprez, L. Veyrat, H. Vignaud, G. Nayak, K. Watanabe et al., A tunable Fabry-Pérot quantum Hall interferometer in graphene. Nat. Nanotechnol. 16(5), 555–562 (2021).
[395] X. Chen, X. Lu, S. Dubey, Q. Yao, S. Liu et al., Entanglement of single-photons and chiral phonons in atomically thin WSe2. Nat. Phys. 15(3), 221–227 (2019).
[396] H. Idzuchi, F. Pientka, K.F. Huang, K. Harada, Ö. Gül et al., Unconventional supercurrent phase in Ising superconductor Josephson junction with atomically thin magnetic insulator. Nat. Commun. 12, 5332 (2021).
[397] M. Kim, G.H. Park, J. Lee, J.H. Lee, J. Park et al., Strong proximity Josephson coupling in vertically stacked NbSe2–graphene–NbSe2 van der Waals junctions. Nano Lett. 17(10), 6125–6130 (2017).
[398] K. Kang, H. Berger, K. Watanabe, T. Taniguchi, L. Forró et al., Van der Waals π Josephson junctions. Nano Lett. 22(13), 5510–5515 (2022).
[399] B. Pal, A. Chakraborty, P.K. Sivakumar, M. Davydova, A.K. Gopi et al., Josephson diode effect from Cooper pair momentum in a topological semimetal. Nat. Phys. 18(10), 1228–1233 (2022).
[400] F.K. Vries, E. Portoles, G. Zheng, T. Taniguchi, K. Watanabe et al., Gate-defined Josephson junctions in magic-angle twisted bilayer graphene. Nat. Nanotechnol. 16(7), 760–763 (2021).
[401] E. Portolés, S. Iwakiri, G. Zheng, P. Rickhaus, T. Taniguchi et al., A tunable monolithic SQUID in twisted bilayer graphene. Nat. Nanotechnol. 17, 1159–1164 (2022).
[402] L.S. Farrar, A. Nevill, Z.J. Lim, G. Balakrishnan, S. Dale et al., Superconducting quantum interference in twisted van der Waals heterostructures. Nano Lett. 21(16), 6725–6731 (2021).
[403] J. Sarkar, K.V. Salunkhe, S. Mandal, S. Ghatak, A.H. Marchawala et al., Quantum-noise-limited microwave amplification using a graphene Josephson junction. Nat. Nanotechnol. 17, 1147–1152 (2022).
[404] C. Tong, R. Garreis, A. Knothe, M. Eich, A. Sacchi et al., Tunable valley splitting and bipolar operation in graphene quantum dots. Nano Lett. 21(2), 1068–1073 (2021).
[405] K. Wang, K.D. Greve, L.A. Jauregui, A. Sushko, A. High et al., Electrical control of charged carriers and excitons in atomically thin materials. Nat. Nanotechnol. 13(2), 128–132 (2018).
[406] L.J. Wang, G.P. Guo, D. Wei, G. Cao, T. Tu et al., Gates controlled parallel-coupled double quantum dot on both single layer and bilayer graphene. Appl. Phys. Lett. 99(11), 112117 (2011).
[407] Z.Z. Zhang, X.X. Song, G. Luo, G.W. Deng, V. Mosallanejad et al., Electrotunable artificial molecules based on van der Waals heterostructures. Sci. Adv. 3(10), e1701699 (2017).
[408] M. Hamer, E. Tóvári, M. Zhu, M.D. Thompson, A. Mayorov et al., Gate-defined quantum confinement in InSe-based van der Waals heterostructures. Nano Lett. 18(6), 3950–3955 (2018).
[409] C. Chakraborty, L. Kinnischtzke, K.M. Goodfellow, R. Beams, A.N. Vamivakas, Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10(6), 507–511 (2015).
[410] C. Palacios-Berraquero, M. Barbone, D. Kara, X. Chen, I. Goykhman et al., Atomically thin quantum light-emitting diodes. Nat. Commun. 7, 12978 (2016).
[411] A. Hötger, J. Klein, K. Barthelmi, L. Sigl, F. Sigger et al., Gate-switchable arrays of quantum light emitters in contacted monolayer MoS2 van der Waals heterodevices. Nano Lett. 21(2), 1040–1046 (2021).
[412] K. Parto, S.I. Azzam, K. Banerjee, G. Moody, Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K. Nat. Commun. 12, 3585 (2021).
[413] H. Kim, J.S. Moon, G. Noh, J. Lee, J.H. Kim, Position and frequency control of strain-induced quantum emitters in WSe2 monolayers. Nano Lett. 19(10), 7534–7539 (2019).
[414] O. Iff, D. Tedeschi, J. Martín-Sánchez, M. Moczała-Dusanowska, S. Tongay et al., Strain-tunable single photon sources in WSe2 monolayers. Nano Lett. 19(10), 6931–6936 (2019).
[415] M. Blauth, M. Jürgensen, G. Vest, O. Hartwig, M. Prechtl et al., Coupling single photons from discrete quantum emitters in WSe2 to lithographically defined plasmonic slot waveguides. Nano Lett. 18(11), 6812–6819 (2018).
[416] G. Noh, D. Choi, J.H. Kim, D.G. Im, Y.H. Kim et al., Stark tuning of single-photon emitters in hexagonal boron nitride. Nano Lett. 18(8), 4710–4715 (2018).
[417] A. Chakraborty, K.M. Goodfellow, S. Dhara, A. Yoshimura, V. Meunier et al., Quantum-confined Stark effect of individual defects in a van der Waals heterostructure. Nano Lett. 17(4), 2253–2258 (2017).
[418] J. Ziegler, R. Klaiss, A. Blaikie, D. Miller, V.R. Horowitz et al., Deterministic quantum emitter formation in hexagonal boron nitride via controlled edge creation. Nano Lett. 19(3), 2121–2127 (2019).
[419] A. Li, N. Mendelson, R. Ritika, Y. Chen, Z.Q. Xu et al., Scalable and deterministic fabrication of quantum emitter arrays from hexagonal boron nitride. Nano Lett. 21(8), 3626–3632 (2021).
[420] A. Branny, S. Kumar, R. Proux, B.D. Gerardot, Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 8, 15053 (2017).
[421] Y. Luo, G.D. Shepard, J.V. Ardelean, D.A. Rhodes, B. Kim et al., Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nat. Nanotechnol. 13, 1137–1142 (2018).
[422] N. Mathur, A. Mukherjee, X. Gao, J. Luo, B.A. McCullian et al., Excited-state spin-resonance spectroscopy of VB− defect centers in hexagonal boron nitride. Nat. Commun. 13, 3233 (2022).
[423] M. Huang, J. Zhou, D. Chen, H. Lu, N.J. McLaughlin et al., Wide field imaging of van der Waals ferromagnet Fe3GeTe2 by spin defects in hexagonal boron nitride. Nat. Commun. 13, 5369 (2022).
[424] A.L. Exarhos, D.A. Hopper, R.N. Patel, M.W. Doherty, L.C. Bassett, Magnetic-field-dependent quantum emission in hexagonal boron nitride at room temperature. Nat. Commun. 10, 222 (2019).
[425] X. Lyu, Q. Tan, L. Wu, C. Zhang, Z. Zhang et al., Strain quantum sensing with spin defects in hexagonal bBoron nitride. Nano Lett. 22(16), 6553–6559 (2022).
[426] E. Fröch, L.P. Spencer, M. Kianinia, D.D. Totonjian, M. Nguyen et al., Coupling spin defects in hexagonal boron nitride to monolithic bullseye cavities. Nano Lett. 21(15), 6549–6555 (2021).
[427] X. Gao, B. Jiang, A.E. Llacsahuanga Allcca, K. Shen, M.A. Sadi et al., High-contrast plasmonic-enhanced shallow spin defects in hexagonal boron nitride for quantum sensing. Nano Lett. 21(18), 7708–7714 (2021).
[428] X. Xu, A.B. Solanki, D. Sychev, X. Gao, S. Peana et al., Greatly enhanced emission from spin defects in hexagonal boron nitride enabled by a low-loss plasmonic nanocavity. Nano Lett. 23(1), 25–33 (2023).
[429] A.J. Healey, S.C. Scholten, T. Yang, J.A. Scott, G.J. Abrahams et al., Quantum microscopy with van der Waals heterostructures. Nat. Phys. 19, 87–91 (2022).
[430] Z.L. Xiang, S. Ashhab, J. You, F. Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85(2), 623 (2013).
[431] J.G. Kroll, W. Uilhoorn, K.L. van der Enden, D.de Jong, K. Watanabe et al., Magnetic field compatible circuit quantum electrodynamics with graphene Josephson junctions. Nat. Commun. 9(1), 4615 (2018).
[432] E. Schmidt, M.D. Jenkins, K. Watanabe, T. Taniguchi, G.A. Steele, A ballistic graphene superconducting microwave circuit. Nat. Commun. 9(1), 4069 (2018).
[433] A. Antony, M.V. Gustafsson, G.J. Ribeill, M. Ware, A. Rajendran et al., Miniaturizing transmon qubits using van der Waals materials. Nano Lett. 21(23), 10122–10126 (2021).
[434] J.I. Wang, M.A. Yamoah, Q. Li, A.H. Karamlou, T. Dinh et al., Hexagonal boron nitride as a low-loss dielectric for superconducting quantum circuits and qubits. Nat. Mater. 21(4), 398–403 (2022).
[435] X. Liu, M.C. Hersam, 2D materials for quantum information science. Nat. Rev. Mater. 4(10), 669–684 (2019).
[436] Z. Ahmed, A. Afzalian, T. Schram, D. Jang, D. Verreck et al., Introducing 2D-FETs in device scaling roadmap using DTCO. in 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 22.5.1–22.5.4 (2020).
[437] K. Maxey, C.H. Naylor, K.P. O’ Brien, A. Penumatcha, A. Oni et al., 300 mm MOCVD 2D CMOS Materials for More (Than) Moore scaling. in 2022 IEEE Symposium on VLSI Technology and Circuits. Honolulu, HI, USA, 419–420 (2022).
[438] T.-A. Chen, C.-P. Chuu, C.-C. Tseng, C.-K. Wen, H.S.P. Wong et al., Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature 579, 219–223 (2020).
[439] C.H. Naylor, K. Maxey, C. Jezewski, K.P.O’ Brien, A.V. Penumatcha et al., 2D materials in the BEOL. in 2023 IEEE Symposium on VLSI Technology and Circuits. Kyoto, Japan, 1–2 (2023).
[440] T. Schram, Q. Smets, D. Radisic, B. Groven, D. Cott et al., High yield and process uniformity for 300 mm integrated WS2 FETs. in 2021 Symposium on VLSI Technology. Kyoto, Japan, 1–2 (2021). https://ieeexplore.ieee.org/document/9371926
[441] I. Asselberghs, Q. Smets, T. Schram, B. Groven, D. Verreck et al., Wafer-scale integration of double gated WS2-transistors in 300mm Si CMOS fab. 2020 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA, 40.2.1–40.2.4 (2020).