• High Power Laser and Particle Beams
  • Vol. 35, Issue 4, 041001 (2023)
Boyu Tian, Yingnan Peng, Qiqi Hu, Jiazhu Duan, Yongquan Luo, Xiangjie Zhao*, and Dayong Zhang*
Author Affiliations
  • Institute of Fluid Physics, CAEP, Mianyang 621900, China
  • show less
    DOI: 10.11884/HPLPB202335.220305 Cite this Article
    Boyu Tian, Yingnan Peng, Qiqi Hu, Jiazhu Duan, Yongquan Luo, Xiangjie Zhao, Dayong Zhang. Review of optical phased array technology and its applications[J]. High Power Laser and Particle Beams, 2023, 35(4): 041001 Copy Citation Text show less
    References

    [1] Xu Longdao. Dictionary of physics[M]. Beijing: Science Press, 2004

    [2] Mahan A I, Bitterli C V, Cannon S M. Far-field diffraction patterns of single and multiple apertures bounded by arcs and radii of concentric circles[J]. Journal of the Optical Society of America, 54, 721-732(1964).

    [3] Friis H T, Feldman C B. A multiple unit steerable antenna for short-wave reception[J]. Proceedings of the Institute of Radio Engineers, 25, 841-917(1937).

    [4] Zhao Zhichao. Study on data fusion techniques of missile defense radar wk[D]. Changsha: National University of Defense Technology, 2010

    [5] Meyer R A. Optical beam steering using a multichannel lithium tantalate crystal[J]. Applied Optics, 11, 613-616(1972).

    [6] Chang Shuo, Wang Zhaokun, Wang D N, et al. Tunable and dual-wavelength mode-locked Yb-doped fiber laser based on graded-index multimode fiber device[J]. Optics & Laser Technology, 140, 107081(2021).

    [7] Wu Bo, Zhang Bin, Liu Weijie, et al. Recoverable and rewritable waveguide beam splitters fabricated by tailored femtosecond laser writing of lithium tantalate crystal[J]. Optics & Laser Technology, 145, 107500(2022).

    [8] Zhu Shuangqi, Xu Zhentao, Zhang Hao, et al. Liquid crystal integrated metadevice for reconfigurable hologram displays and optical encryption[J]. Optics Express, 29, 9553-9564(2021).

    [9] Hsu C P, Li Boda, Solano-Rivas B, et al. A review and perspective on optical phased array for automotive LiDAR[J]. IEEE Journal of Selected Topics in Quantum Electronics, 27, 8300416(2021).

    [10] Lu Ping, Xu Weihan, Zhu Chen, et al. Integrated multi-beam optical phased array based on a 4 × 4 Butler matrix[J]. Optics Letters, 46, 1566-1569(2021).

    [11] Fathi H, Närhi M, Gumenyuk R. Towards ultimate high-power scaling: coherent beam combining of fiber lasers[J]. Photonics, 8, 566(2021).

    [12] Tang Mingyuan, Cao Jie, Hao Qun, et al. Wide range retina-like scanning based on liquid crystal optical phased array[J]. Optics and Lasers in Engineering, 151, 106885(2022).

    [13] Geng Chao, Li Feng, Huang Guan, . Research Progress of laser phased array technique based on fiber adaptive manipulation (Invited)[J]. Infrared and Laser Engineering, 47, 0103003(2018).

    [14] DeHainaut C R, Duneman D C, Dymale R C, et al. Wide field performance of a phased array telescope[J]. Optical Engineering, 34, 876-880(1995).

    [15] Qin Qi, Yan Fengping, Liu Yan, et al. Multi-wavelength thulium-doped fiber laser via a polarization-maintaining Sagnac loop mirror with a theta-shaped configuration[J]. Journal of Lightwave Technology, 39, 4517-4524(2021).

    [16] Ma Pengfei, Chang Hongxiang, Ma Yanxing, et al. 7.1 kW coherent beam combining system based on a seven-channel fiber amplifier array[J]. Optics & Laser Technology, 140, 107016(2021).

    [17] Van Acoleyen K, Bogaerts W, Jágerská J, et al. Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator[J]. Optics Letters, 34, 1477-1479(2009).

    [18] Wang Ke, Yuan Zeshi, Wong E, et al. Experimental demonstration of indoor infrared optical wireless communications with a silicon photonic integrated circuit[J]. Journal of Lightwave Technology, 37, 619-626(2019).

    [19] He Jingwen, Dong Tao, Xu Yue. Review of photonic integrated optical phased arrays for space optical communication[J]. IEEE Access, 8, 188284-188298(2020).

    [20] Kendrick R L, Aubrun J N, Bell R, et al. Wide-field Fizeau imaging telescope: experimental results[J]. Applied Optics, 45, 4235-4240(2006).

    [21] Corcoran C J, Pasch K A. Modal analysis of a self-Fourier laser cavity[J]. Journal of Optics A: Pure and Applied Optics, 7, L1(2005).

    [22] Minden M L. Passive coherent combining of fiber oscillats[C]Proceedings of SPIE 6453, Fiber Lasers IV: Technology, Systems, Applications. 2007: 6453.

    [23] Daniault L, Hanna M, Papadopoulos D N, et al. Passive coherent beam combining of two femtosecond fiber chirped-pulse amplifiers[J]. Optics Letters, 36, 4023-4025(2011).

    [24] Kurtz R M, Pradhan R D, Tun N, et al. Mutual injection locking: a new architecture for high-power solid-state laser arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 11, 578-586(2005).

    [25] Wickham M, eregg J, Brosnan S, et al. Coherently coupled high power fiber arrays[C]Advanced SolidState Photonics 2004. 2004: 202206.

    [26] Shay T M. Theory of electronically phased coherent beam combination without a reference beam[J]. Optics Express, 14, 12188-12195(2006).

    [27] Yu C X, Kansky J E, Shaw S E J, et al. Coherent beam combining of a large number of PM fibers in a 2D fiberarray[C]2006 Conference on Lasers Electrooptics 2006 Quantum Electronics Laser Science Conference. 2006: 12.

    [28] Stockley J, Serati S. Advances in liquid crystal beam steering[C]Proceedings of SPIE 5550, FreeSpace Laser Communications IV. 2004: 32.

    [29] Wight D R, Heaton J M, Hughes B T, et al. Novel phased array optical scanning device implemented using GaAs/AlGaAs technology[J]. Applied Physics Letters, 59, 899-901(1991).

    [30] Van Acoleyen K, Rogier H, Baets R. Two-dimensional optical phased array antenna on silicon-on-insulator[J]. Optics Express, 18, 13655-13660(2010).

    [31] Koh K H, Lee C. A two-dimensional MEMS scanning mirror using hybrid actuation mechanisms with low operation voltage[J]. Journal of Microelectromechanical Systems, 21, 1124-1135(2012).

    [32] Seldin J H, Paxman R G, Zarifis V G, et al. Closedloop wavefront sensing f a sparseaperture multitelescope array using broadb phase diversity[C]Proceedings of SPIE 4091, Imaging Technology Telescopes. 2000: 4863.

    [33] Hill J M, Salinari P. The large binocular telescope project[C]Proceedings of SPIE 5489, Groundbased Telescopes. 1998.

    [34] Ma Yanxing. Study on coherent beam combination of fiber laser based on dithering phase locking technology[D]. Changsha: National University of Defense Technology, 2014

    [35] Seifert L, Liesener J, Tiziani H J. Adaptive ShackHartmann sens[C]Proceedings of SPIE 5144, Optical Measurement Systems f Industrial Inspection III. 2003: 250258.

    [36] Zhang Xiaofang, Guo Jing, Ren Xiaofeng, et al. The wavefront sensless adaptive optics crection f a wide field of view optics system based on the SPGD algithm[C]Proceedings of SPIE 7849, Optical Design Testing IV. 2010: 78492H.

    [37] Vontsov M. Adaptive photonics phaselocked elements (APPLE): system architecture wavefront control concept[C]Proceedings of SPIE 5895, TargetintheLoop: Atmospheric Tracking, Imaging, Compensation II. 2005.

    [38] Dschner T A. Adaptive photonic phase locked elements: an overview[C]MTO Symposium. 2007.

    [39] Liu Zejing, Zhou Pu, Xu Xiaojun, et al. Coherent beam combining of high average power fiber lasers[M]. Changsha: National Defense Industry Press, 2016

    [40] Coffey V. High-energy lasers: new advances in defense applications[J]. Optics and Photonics News, 25, 28-35(2014).

    [41] Optics. g. DARPA extends laser weapon range[EBOL]. (20140311). https:optics.gnews5313.

    [42] Di Pengcheng, Li Xuepeng, Yang Jing, et al. High-power VCSEL-pumped slab laser with temperature fluctuation adaptability[J]. IEEE Photonics Technology Letters, 33, 395-398(2021).

    [43] Mi Shuyi, Li Junhui, Wei Disheng, et al. 105 W continuous-wave diode-pumped Tm: YAP slab laser with high beam quality[J]. Optics & Laser Technology, 138, 106847(2021).

    [44] Machan J P, Long W H, Zamel J, et al. 5.4 kW diodepumped, 2.4x diffractionlimited Nd: YAG laser f material processing[C]Advanced Solid State Lasers 2002. 2002: PD1.

    [45] McNaught S J, Komine H, Weiss S B, et al. 100 kW coherently combined slab MOPAs[C]2009 Conference on Lasers ElectroOptics 2009 Conference on Quantum electronics Laser Science Conference. 2009: 12.

    [46] Wang Dan, Du Yinglei, Wu Yingchen, et al. 20kW class high-beam-quality CW laser amplifier chain based on a Yb: YAG slab at room temperature[J]. Optics Letters, 43, 3838-3841(2018).

    [47] Huang Lei, Zheng Yamin, Guo Yading, et al. 21.2 kW, 1.94 times diffraction-limit quasi-continuous-wave laser based on a multi-stage, power-scalable and adaptive optics controlled Yb: YAG master-oscillator-power-amplifier system[J]. Chinese Optics Letters, 18, 061402(2020).

    [48] Guo Yading. Beam quality control technology f high energy solid laser system[C]The Fourth Symposium on the Development of Atmospheric Optics Adaptive Optics. 2019

    [49] Shang Jianli, Wang Juntao, Peng Wanjing, . Research progress and prospects of laser diode pumped high-energy laser[J]. High Power Laser and Particle Beams, 34, 011007(2022).

    [50] Koester C J, Snitzer E. Amplification in a fiber laser[J]. Applied Optics, 3, 1182-1186(1964).

    [51] Dominic V, MacCmack S, Waarts R, et al. 110 W fiber laser[C]Conference on Lasers ElectroOptics 1999. 1999: CPD111CPD112.

    [52] Jeong Y, Sahu J K, Payne D N, et al. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power[J]. Optics Express, 12, 6088-6092(2004).

    [53] Ikoma S, Nguyen H K, Kashiwagi M, et al. 3 kW single stage allfiber Ybdoped singlemode fiber laser f highly reflective highly thermal conductive materials processing[C]Proceedings of SPIE 10083, Fiber Lasers XIV: Technology Systems. 2017: 100830Y.

    [54] Yang Baolai, Shi Chen, Zhang Hanwei, et al. Monolithic fiber laser oscillator with record high power[J]. Laser Physics Letters, 15, 075106(2018).

    [55] Xi Xiaoming, Wang Peng, Yang Baolai, . All-fiber laser oscillator reach 7kW output power[J]. Chinese Journal of Lasers, 48, 0116001(2021).

    [56] Shiner B. The impact of fiber laser technology on the wld wide material processing market[C]Proceedings of CLEO: Applications Technology 2013. 2013.

    [57] Lin Aoxiang, Zhan Huan, Peng Kun, . 10 kW-level pump-gain integrated functional laser fiber[J]. High Power Laser and Particle Beams, 30, 060101(2018).

    [58] Chen XIaolong, Lou Fengguang, He Yu, . Home-made 10 kW fiber laser with high efficiency[J]. Acta Optica Sinica, 39, 0336001(2019).

    [59] Yang Baolai, Zhang Hanwei, Wang Xiaolin, et al. Mitigating transverse mode instability in a single-end pumped all-fiber laser oscillator with a scaling power of up to 2 kW[J]. Journal of Optics, 18, 105803(2016).

    [60] Fang Qiang, Li Jinhui, Shi Wei, et al. 5 kW near-diffraction-limited and 8 kW high-brightness monolithic continuous wave fiber lasers directly pumped by laser diodes[J]. IEEE Photonics Journal, 9, 1506107(2017).

    [61] Shima K, Ikoma S, Uchiyama K, et al. 5kW single stage allfiber Ybdoped singlemode fiber laser f materials processing[C]Proceedings of SPIE 10512, Fiber Lasers XV: Technology Systems. 2018: 105120C.

    [62] Yang Baolai, Wang Peng, Zhang Hanwei, et al. 6 kW single mode monolithic fiber laser enabled by effective mitigation of the transverse mode instability[J]. Optics Express, 29, 26366-26374(2021).

    [63] Huang Zhimeng, Shu Qiang, Tao Rumao, et al. > 5kW record high power narrow linewidth laser from traditional step-index monolithic fiber amplifier[J]. IEEE Photonics Technology Letters, 33, 1181-1184(2021).

    [64] Wang Xiaozhuo, Crump P, Wenzel H, et al. Root-cause analysis of peak power saturation in pulse-pumped 1100 nm broad area single emitter diode lasers[J]. IEEE Journal of Quantum Electronics, 46, 658-665(2010).

    [65] Wenzel H, Crump P, Pietrzak A, et al. Theoretical and experimental investigations of the limits to the maximum output power of laser diodes[J]. New Journal of Physics, 12, 085007(2010).

    [66] Morita T, Nagakura T, Torii K, et al. High-efficient and reliable broad-area laser diodes with a window structure[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1502104(2013).

    [67] Kaifuchi Y, Yamagata Y, Nogawa R, et al. Ultimate high power operation of 9xxnm single emitter broad stripe laser diodes[C]Proceedings of SPIE 10086, HighPower Diode Laser Technology XV. 2017: 100860D.

    [68] Gapontsev V, Moshegov N, Berezin I, et al. Highlyefficient highpower pumps f fiber lasers[C]Proceedings of SPIE 10086, HighPower Diode Laser Technology XV. 2017: 1008604.

    [69] Ren Zhanqiang, Li Qingmin, Li Bo, et al. High wall-plug efficiency 808-nm laser diodes with a power up to 30.1 W[J]. Journal of Semiconductors, 41, 032901(2020).

    [70] Virtanen H, Uusitalo T, Karjalainen M, et al. Narrow-Linewidth 780-nm DFB lasers fabricated using nanoimprint lithography[J]. IEEE Photonics Technology Letters, 30, 51-54(2018).

    [71] Lewoczko-Adamczyk W, Pyrlik C, Häger J, et al. Ultra-narrow linewidth DFB-laser with optical feedback from a monolithic confocal Fabry-Perot cavity[J]. Optics Express, 23, 9705-9709(2015).

    [72] Codemard C A, Vukovic N T, Chan J S, et al. Resonant SRS filtering fiber for high power fiber laser applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 0901509(2018).

    [73] Liu T, Yang Z M, Xu S H, et al. Analytical investigation on transient thermal effects in pulse end-pumped short-length fiber laser[J]. Optics Express, 17, 12875-12890(2009).

    [74] Dawson J W, Messerly M J, Heebner J E, et al. Power scaling analysis of fiber lasers amplifiers based on nonsilica materials[C]Proceedings of SPIE 7686, Laser Technology f Defense Security VI. 2010: 768611.

    [75] Augst S J, Fan T Y, Sanchez A. Coherent beam combining and phase noise measurements of ytterbium fiber amplifiers[J]. Optics Letters, 29, 474-476(2004).

    [76] Enloe L H, Rodda J L. Laser phase-locked loop[J]. Proceedings of the IEEE, 53, 165-166(1965).

    [77] Glova A F, Drobyazko S V, Likhanskii V V. Multibeam CO2 lasers theirs applications[C]Proceedings of the 2nd International Conference on Advanced Optoelectronics Lasers. 2005: 4346.

    [78] Abramski K M, Colley A D, Baker H J, et al. Phase-locked CO2 laser array using diagonal coupling of waveguide channels[J]. Applied Physics Letters, 60, 530-532(1992).

    [79] Hornby A M, Baker H J, Colley A D, et al. Phase locking of linear arrays of CO2 waveguide lasers by the waveguide-confined Talbot effect[J]. Applied Physics Letters, 63, 2591-2593(1993).

    [80] Bernard J M, Chodzko R A, Mirels H. Coupled multiline CW HF lasers—Experimental performance[J]. AIAA Journal, 26, 1369-1372(1988).

    [81] Redmond S M, Kansky J E, Creedon K J, et al. Active coherent combination of 200 semiconduct amplifiers using a SPGD algithm[C]Laser Science to Photonic Applications. 2011: 12.

    [82] Albrodt P, Niemeyer M, Crump P, et al. Coherent beam combining of high power quasi continuous wave tapered amplifiers[J]. Optics Express, 27, 27891-27901(2019).

    [83] Bogatov A P, Drakin A E, Mikaelyan G T. Coherent combining of diode laser beams in a master oscillator – zigzag slab power amplifier system[J]. Quantum Electronics, 49, 1014-1018(2019).

    [84] Schimmel G, Doyen I, Janicot S, et al. Passive coherent combining of two tapered laser diodes in an interferometric external cavity[C]2015 IEEE High Power Diode Lasers Systems Conference. 2015: 1112.

    [85] Huang R K, Chann B, Burgess J, et al. Teradiode''s high brightness semiconduct lasers[C]Proceedings of SPIE 9730, Components & Packaging f Laser Systems II. 2016: 97300C.

    [86] Oka M, Masuda H, Kaneda Y, et al. Laser-diode-pumped phase-locked Nd: YAG laser arrays[J]. IEEE Journal of Quantum Electronics, 28, 1142-1147(1992).

    [87] Kono Y, Takeoka M, Uto K, et al. A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity[J]. IEEE Journal of Quantum Electronics, 36, 607-614(2000).

    [88] Marmo J, Injeyan H, Komine H, et al. Joint high power solid state laser program advancements at Nthrop Grumman[C]Proceedings of SPIE 7195, Fiber Lasers VI: Technology, Systems, Applications. 2009: 719507.

    [89] Kienel M, Müller M, Demmler S, et al. Coherent beam combination of Yb: YAG single-crystal rod amplifiers[J]. Optics Letters, 39, 3278-3281(2014).

    [90] Huang Zhimeng, Tang Xuan, Zhang Dayong, et al. Phase locking of slab laser amplifiers via square wave dithering algorithm[J]. Applied Optics, 53, 2163-2169(2014).

    [91] Bourderionnet J, Bellanger C, Primot J, et al. Collective coherent phase combining of 64 fibers[J]. Optics Express, 19, 17053-17058(2011).

    [93] Ma Yanxing, Wang Xiaolin, Zhou Pu, et al. Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique[J]. Optics and Lasers in Engineering, 49, 1089-1092(2011).

    [94] Yu C X, Augst S J, Redmond S M, et al. Coherent combining of a 4 kW, eight-element fiber amplifier array[J]. Optics Letters, 36, 2686-2688(2011).

    [95] Huang Zhimeng, Tang Xuan, Luo Yongquan, et al. Active phase locking of thirty fiber channels using multilevel phase dithering method[J]. Review of Scientific Instruments, 87, 033109(2016).

    [96] Peng Yingnan, Hu Qiqi, Duan Jiazhu, et al. Active phase locking of laser coherent beam combination using square wave dithering algorithm[J]. Journal of Russian Laser Research, 43, 626-633(2022).

    [97] Peng Y, Hu Q, Duan J, et al. Numerical experimental study on rapidly varying phasedisttion crection using modified square wave dithering algithm[J]. Laser Physics

    [98] Peng Yingnan, Hu Qiqi, Duan Jiazhu, . Self-adaptiue tilt control method based on second order moment of beam for laser array[J]. High Power Laser and Particle Beams, 35, 041010(2023).

    [99] Ren Guoguang, Yi Weiwei, Qi Yu, . U. S. Theater and strategic UVA-borne laser weapon[J]. Laser & Optoelectronics Progress, 54, 100002(2017).

    [100] Li Feng, Geng Chao, Huang Guan, et al. Experimental demonstration of coherent combining with tip/tilt control based on adaptive space-to-fiber laser beam coupling[J]. IEEE Photonics Journal, 9, 7102812(2017).

    [101] Hou Tianyue, An Yi, Chang Qi, et al. Deep learningbased phase control method f coherent beam combining its application in generating bital angular momentum beams[J]. arXiv: 2019, 1903: 03986.

    [102] Azarian A, Bourdon P, Lombard L, et al. Orthogonal coding methods for increasing the number of multiplexed channels in coherent beam combining[J]. Applied Optics, 53, 1493-1502(2014).

    [103] McNaught S J, Thielen P A, Adams L N, et al. Scalable coherent combining of kilowatt fiber amplifiers into a 2.4-kW beam[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 0901008(2014).

    [104] Shekel E, Vidne Y, Urbach B. 16kW single mode CW laser with dynamic beam f material processing[C]Proceedings of SPIE 11260, Fiber Lasers XVII: Technology Systems. 2020: 1126021.

    [105] Hu Zhen, Jiang Huilin, Tong Shoufeng, . Research on ATP system technology of laser communication terminal in space[J]. Acta Armamentarii, 32, 752-757(2011).

    [106] Haellstig E, Stigwall J, Lindgren M, et al. Laser beam steering tracking using a liquid crystal spatial light modulat[C]Proceedings of SPIE 5087, Laser Systems Technology. 2003.

    [107] Apter B, Efron U, Bahat-Treidel E. On the fringing-field effect in liquid-crystal beam-steering devices[J]. Applied Optics, 43, 11-19(2004).

    [108] Abe H, Takeuchi M, Takeuchi G, et al. Two-dimensional beam-steering device using a doubly periodic Si photonic-crystal waveguide[J]. Optics Express, 26, 9389-9397(2018).

    [109] Tuantranont A, Bright V M, Zhang J, et al. Optical beam steering using MEMS-controllable microlens array[J]. Sensors and Actuators A: Physical, 91, 363-372(2001).

    [110] Mcmanamon P F, Dorschner T A, Corkum D L, et al. Optical phased array technology[J]. Proceedings of the IEEE, 84, 268-298(1996).

    [111] Resler D P, Hobbs D S, Sharp R C, et al. High-efficiency liquid-crystal optical phased-array beam steering[J]. Optics Letters, 21, 689-691(1996).

    [112] Xu Lin. Research on phase delay diffraction efficiency of liquid crystal optical phased array[D]. Harbin: Harbin Institute of Technology, 2008

    [113] Khan S A, Riza N A. Demonstration of 3dimensional wideangle nomovingparts laser beam steering[C]Proceedings of SPIE 5550, FreeSpace Laser Communications IV. 2004.

    [114] Riza N A, Arain M A. Code-multiplexed optical scanner[J]. Applied Optics, 42, 1493-1502(2003).

    [115] Kim J, Oh C, Escuti M J, et al. Wideangle nonmechanical beam steering using thin liquid crystal polarization gratings[C]Proceedings of SPIE, 2008: 709302.

    [116] Whitaker B, Harris S R. A preliminary investigation into the effects of highpower illumination on optical phased arrays[R]. AFRL, 2010.

    [117] Gu D, Wen B, Mahajan M, et al. High power liquid crystal spatial light modulats[C]Proceedings of SPIE 6306, Advanced Wavefront Control: Methods, Devices, Applications IV. 2006: 630602.

    [118] Wang Xiangru, Zhou Zhuangqi. Research progress of liquid crystal optical phased array in high power laser applications (invited)[J]. Infrared and Laser Engineering, 47, 103006(2018).

    [119] Li Yanglong, Wang Weiping, Luo Yongquan, . 1 064 nm laser damage on indium tin oxide films[J]. Chinese Journal of High Pressure Physics, 26, 107-112(2012).

    [120] Luo Fei, Luo Yongquan, Zhang Dayong, . Analysis of multi-fractal patterns of ITO films radiated by laser[J]. Applied Laser, 30, 86-90(2010).

    [121] Luo Yongquan, Zhang Dayong, Zhang Cuijuan, . Research of laser damage on liquid crystal optical elements[J]. Laser Technology, 34, 392-394(2010).

    [122] Luo Yongquan, Wang Weiping, Luo Fei. Experimental study on heating-induced phase transition of vanadium dioxide thin films irradiated by CW laser[J]. High Power Laser and Particle Beams, 18, 713-716(2006).

    [123] Wang Haifeng, Huang Zhimeng, Zhang Dayong, et al. Thickness effect on laser-induced-damage threshold of indium-tin oxide films at 1064 nm[J]. Journal of Applied Physics, 110, 113111(2011).

    [124] Zhao Xiangjie, Liu Cangli, Duan Jiazhu, et al. Morphology effect on the light scattering and dynamic response of polymer network liquid crystal phase modulator[J]. Optics Express, 22, 14757-14768(2014).

    [125] Zhao Xiangjie, Liu Cangli, Zhang Dayong, et al. Direct investigation and accurate control of phase profile in liquid-crystal optical-phased array for beam steering[J]. Applied Optics, 52, 7109-7116(2013).

    [126] Zhao Xiangjie, Zhang Dayong, Luo Yongquan, et al. Numerical analysis and design of patterned electrode liquid crystal microlens array with dielectric slab[J]. Optics & Laser Technology, 44, 1834-1839(2012).

    [127] Zhao Xiangjie, Liu Cangli, Zhang Dayong, et al. Modeling and design of an optimized patterned electrode liquid crystal microlens array with dielectric slab[J]. Optik, 124, 6132-6139(2013).

    [128] Chen Yibo, Shen Hao, Duan Jiazhu, . Development of optically addressed liquid crystal light valve for high power density beam control[J]. High Power Laser and Particle Beams, 35, 041012(2023).

    [129] Jalali B, Fathpour S. Silicon photonics[J]. Journal of Lightwave Technology, 24, 4600-4615(2007).

    [130] Trinh P D, Yegnanarayanan S, Coppinger F, et al. Silicon-on-insulator (SOI) phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity[J]. IEEE Photonics Technology Letters, 9, 940-942(1997).

    [131] Phare C T, Shin M C, Miller S A, et al. Silicon optical phased array with high-efficiency beam formation over 180 degree field of view[J]. arXiv:, 04624, 2018(1802).

    [132] Yaacobi A, Sun Jie, Moresco M, et al. Integrated phased array for wide-angle beam steering[J]. Optics Letters, 39, 4575-4578(2014).

    [133] Writers S. SWEEPER demonstrates wideangle optical phased array technology[EBOL]. (20150525). https:www.spacedaily.comreptsSWEEPER_Demonstrates_Wide_Angle_Optical_Phased_Array_Technology_999.html.

    [134] Chung S W, Abediasl H, Hashemi H. A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS[J]. IEEE Journal of Solid-State Circuits, 53, 275-296(2018).

    [135] Ma Weichao, Tan Su, Wang Kuankuan, et al. Practical two-dimensional beam steering system using an integrated tunable laser and an optical phased array[J]. Applied Optics, 59, 9985-9994(2020).

    [136] Yoo B W, Megens M, Sun Tianbo, et al. A 32 × 32 optical phased array using polysilicon sub-wavelength high-contrast-grating mirrors[J]. Optics Express, 22, 19029-19039(2014).

    [137] Poulton C V, Byrd M J, Moss B, et al. 8192element optical phased array with 100° steering range flipchip CMOS[C]CLEO: Applications Technology 2020. 2020: JTh4A. 3.

    [138] Zhang Xiaosheng, Kwon K, Henriksson J, et al. A large-scale microelectromechanical-systems-based silicon photonics LiDAR[J]. Nature, 603, 253-258(2022).

    [139] Jiang Wenhan. Adaptive optical technology[J]. Chinese Journal of Nature, 28, 7-13(2006).

    [140] Israel D J. Laser communications relay demonstration: introduction f experimenters[R]. NASA, 2017.

    [141] Wen Chuanhua, Li Yuquan. Research on adaptive optics in satellitetoground laser communication[C]2006 Academic Meeting f Postgraduates in Beijing Area—Communication Infmation Technology Conference Proceedings. 2006

    [142] Bridges W B, Brunner P T, Lazzara S P, et al. Coherent optical adaptive techniques[J]. Applied Optics, 13, 291-300(1974).

    [143] Vorontsov M A, Kolosov V. Target-in-the-loop beam control: basic considerations for analysis and wave-front sensing[J]. Journal of the Optical Society of America A, 22, 126-141(2005).

    [144] Weyrauch T, Vorontsov M A, Carhart G W, et al. Experimental demonstration of coherent beam combining over a 7 km propagation path[J]. Optics Letters, 36, 4455-4457(2011).

    [145] Weyrauch T, Vorontsov M, Mangano J, et al. Deep turbulence effects mitigation with coherent combining of 21 laser beams over 7 km[J]. Optics Letters, 41, 840-843(2016).

    [146] Ma Yanxing, Zhou Pu, Tao Rumao, et al. Target-in-the-loop coherent beam combination of 100 W level fiber laser array based on an extended target with a scattering surface[J]. Optics Letters, 38, 1019-1021(2013).

    [147] Zhi Dong. Study on the targetintheloop coherent beam combination technology of fiber lasers[D]. Changsha: National University of Defense Technology, 2018

    [148] Li Feng, Zou Fan, Jiang Jiali, . Target-in-the-Loop in 2 km atmosphere based on 57-channel adaptive fiber laser optical phased array system[J]. Chinese Journal of Lasers, 49, 0616002(2022).

    [149] Meinel A B. Cost-scaling laws applicable to very large optical telescopes[J]. Optical Engineering, 18, 186645(1979).

    [150] Wang Haitao, Zhou Bifang. Optical synthesis aperture interference image technology[J]. Optics and Precision Engineering, 10, 434-442(2002).

    [151] Giesen P, Ouwerkerk B, van Brug H, et al. Mechanical setup f optical aperture synthesis f widefield imaging[C]Proceedings of SPIE 5528, Space Systems Engineering Optical Alignment Mechanisms. 2004: 361371.

    [152] Ming Wang, Wang Jianli, Zhang Jingxu, . Error budget and analysis for optical system in large telescope[J]. Optics and Precision Engineering, 17, 104-108(2009).

    [153] Carrara W G, Goodman R S, Majewski R M, Spotlight synthetic aperture radar: signal processing algithms [J]. Journal of Atmospheric SolarTerrestrial Physics, 1997, 59(5): 597599.

    [154] Hege E K, Beckers J M, Strittmatter P A, et al. Multiple mirror telescope as a phased array telescope[J]. Applied Optics, 24, 2565-2576(1985).

    [155] Beckers J M. VLT interferometer: III. Facts affecting wide fieldofview operation[C]Proceedings of SPIE 1236, Advanced Technology Optical Telescopes IV. 1990.

    [156] Hill J M, Ashby D S, Brynnel J G, et al. The Large Binocular Telescope: binocular all the time[C]Proceedings of SPIE 9145, Groundbased Airbne Telescopes V. 2014: 914502.

    [157] Ricklin J, Schumm B, Dierking M, et al. Synthetic aperture ladar f tactical imaging (SALTI) (Briefing ts)[R]. DARPA, 2007.

    [158] Krause B W, Buck J, Ryan C, et al. Synthetic aperture ladar flight demonstration[C]CLEO: Applications Technology 2011. 2011: PDPB7.

    [159] Tian He, Liu Zheng, Zeng Zheng, et al. An airborne inverse synthetic aperture ladar imaging method based on sparse sampling[J]. Procedia Computer Science, 174, 694-699(2020).

    [160] Lu Tianan, Huang Fei, Li Hongping. Neural network based synthetic aperture ladar imaging through marine atmosphere[J]. Optik, 219, 164975(2020).

    CLP Journals

    [1] Xinyue Niu, Yanran Gu, Xu Chu, Jinmei Yao, Muyu Yi, Langning Wang, Tao Xun. Primary study on time control technology of active phased array based on photoconductive microwave source[J]. High Power Laser and Particle Beams, 2024, 36(1): 013005

    Boyu Tian, Yingnan Peng, Qiqi Hu, Jiazhu Duan, Yongquan Luo, Xiangjie Zhao, Dayong Zhang. Review of optical phased array technology and its applications[J]. High Power Laser and Particle Beams, 2023, 35(4): 041001
    Download Citation