• Photonics Research
  • Vol. 12, Issue 3, A28 (2024)
Ilya Kondratyev1,*, Veronika Ivanova2, Suren Fldzhyan1,2, Artem Argenchiev1..., Nikita Kostyuchenko1, Sergey Zhuravitskii1, Nikolay Skryabin1, Ivan Dyakonov1,2, Mikhail Saygin1,3, Stanislav Straupe1,2, Alexander Korneev1 and Sergei Kulik1,3|Show fewer author(s)
Author Affiliations
  • 1Quantum Technology Centre and Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow 119991, Russia
  • 2Russian Quantum Center, Moscow 121205, Russia
  • 3Laboratory of Quantum Engineering of Light, South Ural State University, Chelyabinsk 454080, Russia
  • show less
    DOI: 10.1364/PRJ.504588 Cite this Article Set citation alerts
    Ilya Kondratyev, Veronika Ivanova, Suren Fldzhyan, Artem Argenchiev, Nikita Kostyuchenko, Sergey Zhuravitskii, Nikolay Skryabin, Ivan Dyakonov, Mikhail Saygin, Stanislav Straupe, Alexander Korneev, Sergei Kulik, "Large-scale error-tolerant programmable interferometer fabricated by femtosecond laser writing," Photonics Res. 12, A28 (2024) Copy Citation Text show less
    References

    [1] N. C. Harris, J. Carolan, D. Bunandar. Linear programmable nanophotonic processors. Optica, 5, 1623-1631(2018).

    [2] D. Pérez, I. Gasulla, J. Capmany. Programmable multifunctional integrated nanophotonics. Nanophotonics, 7, 1351-1371(2018).

    [3] K. Tanizawa, K. Suzuki, M. Toyama. Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer. Opt. Express, 23, 17599-17606(2015).

    [4] L. Lu, S. Zhao, L. Zhou. 16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers. Opt. Express, 24, 9295-9307(2016).

    [5] K. Suzuki, K. Tanizawa, S. Suda. Broadband silicon photonics 8 × 8 switch based on double-Mach-Zehnder element switches. Opt. Express, 25, 7538-7546(2017).

    [6] H. Zhou, J. Dong, J. Cheng. Photonic matrix multiplication lights up photonic accelerator and beyond. Light Sci. Appl., 11, 30(2022).

    [7] J. Cheng, Y. Zhao, W. Zhang. A small microring array that performs large complex-valued matrix-vector multiplication. Front. Optoelectron., 15, 15(2022).

    [8] J. Capmany, D. Pérez. Programmable Integrated Photonics(2020).

    [9] J. Carolan, C. Harrold, C. Sparrow. Universal linear optics. Science, 349, 711-716(2015).

    [10] P. Sibson, C. Erven, M. Godfrey. Chip-based quantum key distribution. arXiv(2015).

    [11] Y. Luo, D. Mengu, N. T. Yardimci. Design of task-specific optical systems using broadband diffractive neural networks. Light Sci. Appl., 8, 112(2019).

    [12] A. Goel, C. Tung, Y.-H. Lu. A survey of methods for low-power deep learning and computer vision. IEEE 6th World Forum on Internet of Things (WF-IoT), 1-6(2020).

    [13] A. Peruzzo, J. McClean, P. Shadbolt. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun., 5, 4213(2014).

    [14] M. Reck, A. Zeilinger, H. J. Bernstein. Experimental realization of any discrete unitary operator. Phys. Rev. Lett., 73, 58-61(1994).

    [15] W. R. Clements, P. C. Humphreys, B. J. Metcalf. Optimal design for universal multiport interferometers. Optica, 3, 1460-1465(2016).

    [16] S. M. P. Kalaiselvi, E. Tang, H. Moser. Wafer scale manufacturing of high precision micro-optical components through X-ray lithography yielding 1800 gray levels in a fingertip sized chip. Sci. Rep., 12, 1-12(2022).

    [17] M. Y. Saygin, I. V. Kondratyev, I. V. Dyakonov. Robust architecture for programmable universal unitaries. Phys. Rev. Lett., 124, 010501(2020).

    [18] J. Bao, Z. Fu, T. Pramanik. Very-large-scale integrated quantum graph photonics. Nat. Photonics, 17, 573-581(2023).

    [19] S. A. Fldzhyan, M. Y. Saygin, S. P. Kulik. Optimal design of error-tolerant reprogrammable multiport interferometers. Opt. Lett., 45, 2632-2635(2020).

    [20] R. Burgwal, W. R. Clements, D. H. Smith. Using an imperfect photonic network to implement random unitaries. Opt. Express, 25, 28236-28245(2017).

    [21] D. A. B. Miller. Perfect optics with imperfect components. Optica, 2, 747-750(2015).

    [22] J. W. Silverstone, D. Bonneau, J. L. O’Brien. Silicon quantum photonics. IEEE J. Sel. Top. Quantum Electron., 22, 390-402(2016).

    [23] S. Y. Siew, B. Li, F. Gao. Review of silicon photonics technology and platform development. J. Lightwave Technol., 39, 4374-4389(2021).

    [24] C. Taballione, R. van der Meer, H. J. Snijders. A 12-mode universal photonic processor for quantum information processing. Mater. Quantum Technol., 1, 035002(2021).

    [25] A. Laing, J. L. O’Brien. Super-stable tomography of any linear optical device. arXiv(2012).

    [26] R. Tang, R. Tanomura, T. Tanemura. Ten-port unitary optical processor on a silicon photonic chip. ACS Photonics, 8, 2074-2080(2021).

    [27] C. Cai, J. Wang. Femtosecond laser-fabricated photonic chips for optical communications: a review. Micromachines, 13, 630(2022).

    [28] F. Flamini, L. Magrini, A. S. Rab. Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining. Light Sci. Appl., 4, e354(2015).

    [29] F. Ceccarelli, S. Atzeni, C. Pentangelo. Low power reconfigurability and reduced crosstalk in integrated photonic circuits fabricated by femtosecond laser micromachining. Laser Photonics Rev., 14, 2000024(2020).

    [30] N. Skryabin, I. Kondratyev, I. Dyakonov. Two-qubit quantum photonic processor manufactured by femtosecond laser writing. Appl. Phys. Lett., 122, 121102(2023).

    [31] C. Pentangelo, F. Ceccarelli, S. Piacentini. Universal photonic processors fabricated by femtosecond laser writing. Proc. SPIE, 12004, 120040B(2022).

    [32] F. Ceccarelli, S. Atzeni, A. Prencipe. Thermal phase shifters for femtosecond laser written photonic integrated circuits. J. Lightwave Technol., 37, 4275-4281(2019).

    [33] M.-T. Vakil-Baghmisheh, A. Navarbaf. A modified very fast simulated annealing algorithm. International Symposium on Telecommunications, 61-66(2008).

    [34] S. Kuzmin, I. Dyakonov, S. Kulik. Architecture agnostic algorithm for reconfigurable optical interferometer programming. Opt. Express, 29, 38429-38440(2021).

    [35] B. Bantysh, K. Katamadze, A. Chernyavskiy. Fast reconstruction of programmable integrated interferometers. Opt. Express, 31, 16729-16742(2023).

    [36] N. Maring, A. Fyrillas, M. Pont. A general-purpose single-photon-based quantum computing platform. arXiv(2023).

    [37] Y. Arakawa, M. J. Holmes. Progress in quantum-dot single photon sources for quantum information technologies: a broad spectrum overview. Appl. Phys. Rev., 7, 021309(2020).

    [38] T. Wu, M. Menarini, Z. Gao. Lithography-free reconfigurable integrated photonic processor. Nat. Photonics, 17, 710-716(2023).

    [39] I. Mansour, F. Caccavale. An improved procedure to calculate the refractive index profile from the measured near-field intensity. J. Lightwave Technol., 14, 423-428(1996).

    [40] S. Wu, Z. Gao, T. Wu. Ultrafast heterodyne mode imaging and refractive index mapping of a femtosecond laser written multimode waveguide. Opt. Lett., 47, 214-217(2022).

    [41] A. Abou Khalil, P. Lalanne, J.-P. Bérubé. Femtosecond laser writing of near-surface waveguides for refractive-index sensing. Opt. Express, 27, 31130-31143(2019).

    [42] https://rscf.ru/en/project/22-12-00353/. https://rscf.ru/en/project/22-12-00353/

    Ilya Kondratyev, Veronika Ivanova, Suren Fldzhyan, Artem Argenchiev, Nikita Kostyuchenko, Sergey Zhuravitskii, Nikolay Skryabin, Ivan Dyakonov, Mikhail Saygin, Stanislav Straupe, Alexander Korneev, Sergei Kulik, "Large-scale error-tolerant programmable interferometer fabricated by femtosecond laser writing," Photonics Res. 12, A28 (2024)
    Download Citation