• International Journal of Extreme Manufacturing
  • Vol. 6, Issue 6, 62005 (2024)
Xing Yi, Wang Jiaqi, and Li Jinxing
DOI: 10.1088/2631-7990/ad65a0 Cite this Article
Xing Yi, Wang Jiaqi, Li Jinxing. Design and manufacturing of soft electronics for in situ biochemical sensing[J]. International Journal of Extreme Manufacturing, 2024, 6(6): 62005 Copy Citation Text show less
References

[1] Sani E S, Wang C R and Gao W 2021 A soft bioaffinity sensor array for chronic wound monitoring Matter4 2613–5

[2] Nwomeh B C, Yager D R and Cohen I K 1998 Physiology of the chronic wound Clin. Plast. Surg.25 341–56

[3] Fengming Y and Wu J B 2014 Biomarkers of inflammatory bowel disease Dis. Markers2014 710915

[4] Berry D and Reinisch W 2013 Intestinal microbiota: a source of novel biomarkers in inflammatory bowel diseases? Best Pract. Res. Clin. Gastroenterol.27 47–58

[5] Meldrum B S 2000 Glutamate as a neurotransmitter in the brain: review of physiology and pathology J. Nutr.130 1007S–15S

[6] Zhou M, Zhai Y M and Dong S J 2009 Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide Anal. Chem.81 5603–13

[7] Wu J, Liu H, Chen W W, Ma B and Ju H X 2023 Device integration of electrochemical biosensors Nat. Rev. Bioeng.1 346–60

[8] Clarke S F and Foster J R 2012 A history of blood glucose meters and their role in self-monitoring of diabetes mellitus Br. J. Biomed. Sci.69 83–93

[9] Grieshaber D, MacKenzie R, Vrs J and Reimhult E 2008 Electrochemical biosensors—sensor principles and architectures Sensors8 1400–58

[10] Sardu C, Marfella R, Santamaria M, Papini S, Parisi Q, Sacra C, Colaprete D, Paolisso G, Rizzo M R and Barbieri M 2018 Stretch, injury and inflammation markers evaluation to predict clinical outcomes after implantable cardioverter defibrillator therapy in heart failure patients with metabolic syndrome Front. Physiol.9 758

[11] Wang W C et al 2021 Strain-insensitive intrinsically stretchable transistors and circuits Nat. Electron.4 143–50

[12] Oh J Y et al 2016 Intrinsically stretchable and healable semiconducting polymer for organic transistors Nature539 411–5

[13] Gao W et al 2016 Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis Nature529 509–14

[14] Lan L Y, Le X H, Dong H Y, Xie J, Ying Y B and Ping J F 2020 One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface Biosens. Bioelectron.165 112360

[15] Boutry C M et al 2019 Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow Nat. Biomed. Eng.3 47–57

[16] Cheraghi S, Taher M A, Karimi-Maleh H, Karimi F, Shabani-Nooshabadi M, Alizadeh M, Al-Othman A, Erk N, Yegya Raman P K and Karaman C 2022 Novel enzymatic graphene oxide based biosensor for the detection of glutathione in biological body fluids Chemosphere287 132187

[17] Gao S X, Cheng Y J, Zhang S H, Zheng X and Wu J H 2022 A biolayer interferometry-based, aptamer–antibody receptor pair biosensor for real-time, sensitive, and specific detection of the disease biomarker TNF- Chem. Eng. J.433 133268

[18] Fan J L and Yang W W 2022 Electrochemical DNA/aptamer biosensors based on SPAAC for detection of DNA and protein Sens. Actuators B 353 131100

[19] Deepa C, Rajeshkumar L and Ramesh M 2022 Preparation, synthesis, properties and characterization of graphene-based 2D nano-materials for biosensors and bioelectronics J. Mater. Res. Technol.19 2657–94

[20] Wang G, He C T, Huang R, Mao J J, Wang D S and Li Y D 2020 Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels J. Am. Chem. Soc.142 19339–45

[21] Chen Y J et al 2017 Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction Angew. Chem., Int. Ed.56 6937–41

[22] Kim S G, Song J, Ryplida B, Jo H J, Jeong G J, Kang I Y, Patel J M, Jin E-J, Jang Y C and Park S Y 2023 Touchable electrochemical hydrogel sensor for detection of reactive oxygen species-induced cellular senescence in articular chondrocytes Adv. Funct. Mater.33 2213887

[23] Stuart T et al 2023 Wireless, Battery-free implants for electrochemical catecholamine sensing and optogenetic stimulation ACS Nano17 561–74

[24] Li J X et al 2022 A tissue-like neurotransmitter sensor for the brain and gut Nature606 94–101

[25] Wu G et al 2022 Implantable aptamer-graphene microtransistors for real-time monitoring of neurochemical release in vivo Nano Lett.22 3668–77

[26] Wen X M et al 2019 Flexible, multifunctional neural probe with liquid metal enabled, ultra-large tunable stiffness for deep-brain chemical sensing and agent delivery Biosens. Bioelectron.131 37–45

[27] Zhao C Z et al 2021 Implantable aptamer-field-effect transistor neuroprobes for in vivo neurotransmitter monitoring Sci. Adv.7 eabj7422

[28] Liu Y L, Chen Y, Fan W T, Cao P, Yan J, Zhao X Z, Dong W G and Huang W H 2020 Mechanical distension induces serotonin release from intestine as revealed by stretchable electrochemical sensing Angew. Chem., Int. Ed.59 4075–781

[29] Brown M S, Browne K, Kirchner N and Koh A 2022 Adhesive-free, stretchable, and permeable multiplex wound care platform ACS Sens.7 1996–2005

[30] Sharifuzzaman M, Chhetry A, Zahed M A, Yoon S H, Park C I, Zhang S P, Chandra Barman S, Sharma S, Yoon H and Park J Y 2020 Smart bandage with integrated multifunctional sensors based on MXene-functionalized porous graphene scaffold for chronic wound care management Biosens. Bioelectron.169 112637

[31] Zhao T M, Fu Y M, Sun C X, Zhao X S, Jiao C X, Du A, Wang Q, Mao Y P and Liu B D 2022 Wearable biosensors for real-time sweat analysis and body motion capture based on stretchable fiber-based triboelectric nanogenerators Biosens. Bioelectron.205 114115

[32] Lee H B, Meeseepong M, Trung T Q, Kim B Y and Lee N E 2020 A wearable lab-on-a-patch platform with stretchable nanostructured biosensor for non-invasive immunodetection of biomarker in sweat Biosens. Bioelectron.156 112133

[33] Wang R, Zhai Q F, An T C, Gong S and Cheng W L 2021 Stretchable gold fiber-based wearable textile electrochemical biosensor for lactate monitoring in sweat Talanta222 121484

[34] Zhao Y M, Zhai Q F, Dong D S, An T C, Gong S, Shi Q Q and Cheng W L 2019 Highly stretchable and strain-insensitive fiber-based wearable electrochemical biosensor to monitor glucose in the sweat Anal. Chem.91 6569–76

[35] Xu G et al 2019 Battery-free and wireless epidermal electrochemical system with all-printed stretchable electrode array for multiplexed in situ sweat analysis Adv. Mater. Technol.4 1800658

[36] Oh S Y et al 2018 Skin-attachable, stretchable electrochemical sweat sensor for glucose and pH detection ACS Appl. Mater. Interfaces10 13729–40

[37] Wang C F, Wang C H, Huang Z L and Xu S 2018 Materials and structures toward soft electronics Adv. Mater.30 1801368

[38] Sunwoo S H, Ha K H, Lee S, Lu N S and Kim D H 2021 Wearable and implantable soft bioelectronics: device designs and material strategies Annu. Rev. Chem. Biomol.12 359–91

[39] Rogers J A, Someya T and Huang Y G 2010 Materials and mechanics for stretchable electronics Science327 1603–7

[40] Zhai Q and Cheng W 2019 Soft and stretchable electrochemical biosensors Mater. Today Nano7 100041

[41] Arab Hassani F, Jin H, Yokota T, Someya T and Thakor N V 2020 Soft sensors for a sensing-actuation system with high bladder voiding efficiency Sci. Adv.6 eaba0412

[42] Fan J A et al 2014 Fractal design concepts for stretchable electronics Nat. Commun.5 3266

[43] Choi K H, Yoo J, Lee C K and Lee S Y 2016 All-inkjet-printed, solid-state flexible supercapacitors on paper Energy Environ. Sci.9 2812–21

[44] Mu M, Chen G M, Yu W J, Liu J M, Wang Y J, Zhao W W and Liu X Q 2024 In situ growth of laser-induced graphene on flexible substrates for wearable sensors ACS Appl. Nano Mater.7 3279–88

[45] Chen Z M, Wang Y Y, Yang Y B, Yang X and Zhang X X 2021 Multifunctional sensing platform based on green-synthesized silver nanostructure and microcrack architecture Chem. Eng. J.403 126388

[46] Matsuhisa N et al 2019 High-transconductance stretchable transistors achieved by controlled gold microcrack morphology Adv. Electron. Mater.5 1900347

[47] Lee H B, Bae C W, Duy L T, Sohn I Y, Kim D I, Song Y J, Kim Y J and Lee N E 2016 Mogul-patterned elastomeric substrate for stretchable electronics Adv. Mater.28 3069–77

[48] Choi W M, Song J Z, Khang D Y, Jiang H Q, Huang Y Y and Rogers J A 2007 Biaxially stretchable “wavy” silicon nanomembranes Nano Lett.7 1655–63

[49] Chan Y T, Skreta M, McPhee H, Saha S, Deus R and Soleymani L 2019 Solution-processed wrinkled electrodes enable the development of stretchable electrochemical biosensors Analyst144 172–9

[50] Kim D H et al 2011 Epidermal electronics Science333 838–43

[51] Xu S et al 2014 Soft microfluidic assemblies of sensors, circuits, and radios for the skin Science344 70–74

[52] Li J, Rossignol F and Macdonald J 2015 Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing Lab Chip15 2538–58

[53] Parrilla M, Cnovas R, Jeerapan I, Andrade F J and Wang J 2016 A textile-based stretchable multi-ion potentiometric sensor Adv. Healthcare Mater.5 996–1001

[54] Mohan A M V, Kim N, Gu Y, Bandodkar A J, You J M, Kumar R, Kurniawan J F, Xu S and Wang J 2017 Merging of thin- and thick-film fabrication technologies: toward soft stretchable “island–bridge” devices Adv. Mater. Technol.2 1600284

[55] Yang S X et al 2015 “Cut-and-paste” manufacture of multiparametric epidermal sensor systems Adv. Mater.27 6423–30

[56] Jang K I et al 2015 Soft network composite materials with deterministic and bio-inspired designs Nat. Commun.6 6566

[57] Bandodkar A J, Jeerapan I, You J M, Nuez-Flores R and Wang J 2016 Highly stretchable fully-printed cnt-based electrochemical sensors and biofuel cells: combining intrinsic and design-induced stretchability Nano Lett.16 721–7

[58] Liu Z Y, Yu M, Lv J H, Li Y C and Yu Z 2014 Dispersed, porous nanoislands landing on stretchable nanocrack gold films: maintenance of stretchability and controllable impedance ACS Appl. Mater. Interfaces6 13487–95

[59] Guo R and Liu J 2017 Implantable liquid metal-based flexible neural microelectrode array and its application in recovering animal locomotion functions J. Micromech. Microeng.27 104002

[60] Li G Y and Lee D W 2017 An advanced selective liquid-metal plating technique for stretchable biosensor applications Lab Chip17 3415–21

[61] Dong R et al 2021 Printed stretchable liquid metal electrode arrays for in vivo neural recording Small17 2006612

[62] Park M, Park J and Jeong U 2014 Design of conductive composite elastomers for stretchable electronics Nano Today9 244–60

[63] Sim K, Rao Z, Ershad F and Yu C J 2020 Rubbery electronics fully made of stretchable elastomeric electronic materials Adv. Mater.32 1902417

[64] Chen M X, Wang Z, Li K W, Wang X D and Wei L 2021 Elastic and stretchable functional fibers: a review of materials, fabrication methods, and applications Adv. Fiber Mater.3 1–13

[65] Dong K, Peng X and Wang Z L 2020 Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence Adv. Mater.32 1902549

[66] Hong G S, Yang X, Zhou T and Lieber C M 2018 Mesh electronics: a new paradigm for tissue-like brain probes Curr. Opin. Neurobiol.50 33–41

[67] Viveros R D, Zhou T, Hong G S, Fu T M, Lin H Y G and Lieber C M 2019 Advanced one- and two-dimensional mesh designs for injectable electronics Nano Lett.19 4180–7

[68] Miyamoto A et al 2017 Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes Nat. Nanotechnol.12 907–13

[69] Wang Z L, Gao R P, Pan Z W and Dai Z R 2001 Nano-scale mechanics of nanotubes, nanowires, and nanobelts Adv. Eng. Mater.3 657–61

[70] Wang Y et al 2017 A highly stretchable, transparent, and conductive polymer Sci. Adv.3 e1602076

[71] Kayser L V and Lipomi D J 2019 Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS Adv. Mater.31 1806133

[72] Chen J W, Yu Q L, Cui X H, Dong M Y, Zhang J X, Wang C, Fan J C, Zhu Y T and Guo Z H 2019 An overview of stretchable strain sensors from conductive polymer nanocomposites J. Mater. Chem. C7 11710–30

[73] Rivnay J, Inal S, Collins B A, Sessolo M, Stavrinidou E, Strakosas X, Tassone C, Delongchamp D M and Malliaras G G 2016 Structural control of mixed ionic and electronic transport in conducting polymers Nat. Commun.7 11287

[74] Sun J Y, Zhao X H, Illeperuma W R K, Chaudhuri O, Oh K H, Mooney D J, Vlassak J J and Suo Z G 2012 Highly stretchable and tough hydrogels Nature489 133–6

[75] Lin S T, Yuk H, Zhang T, Parada G A, Koo H, Yu C J and Zhao X H 2016 Stretchable hydrogel electronics and devices Adv. Mater.28 4497–505

[76] Dickey M D 2017 Stretchable and soft electronics using liquid metals Adv. Mater.29 1606425

[77] Ota H, Chen K, Lin Y J, Kiriya D, Shiraki H, Yu Z B, Ha T J and Javey A 2014 Highly deformable liquid-state heterojunction sensors Nat. Commun.5 5032

[78] Gannarapu A and Gozen B A 2016 Freeze-printing of liquid metal alloys for manufacturing of 3d, conductive, and flexible networks Adv. Mater. Technol.1 1600047

[79] Lee W et al 2022 Universal assembly of liquid metal particles in polymers enables elastic printed circuit board Science378 637–41

[80] Qi D P, Zhang K Y, Tian G W, Jiang B and Huang Y D 2021 Stretchable electronics based on PDMS substrates Adv. Mater.33 2003155

[81] Bandodkar A J, Nuez-Flores R, Jia W Z and Wang J 2015 All-printed stretchable electrochemical devices Adv. Mater.27 3060–5

[82] Lee E, Kim H J, Park Y, Lee S, Lee S Y, Ha T, Shin H J, Kim Y and Kim J 2019 Direct patterning of a carbon nanotube thin layer on a stretchable substrate Micromachines10 530

[83] Wolf M P, Salieb-Beugelaar G B and Hunziker P 2018 PDMS with designer functionalities—properties, modifications strategies, and applications Prog. Polym. Sci.83 97–134

[84] Lim H R, Kim H S, Qazi R, Kwon Y T, Jeong J W and Yeo W H 2020 Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment Adv. Mater.32 1901924

[85] Ma R J, Kang B, Cho S, Choi M and Baik S 2015 Extraordinarily high conductivity of stretchable fibers of polyurethane and silver nanoflowers ACS Nano9 10876–86

[86] Xu X J et al 2018 A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector Adv. Mater.30 1803165

[87] Choi S et al 2015 Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy ACS Nano9 6626–33

[88] Liang J J, Li L, Niu X F, Yu Z B and Pei Q B 2013 Elastomeric polymer light-emitting devices and displays Nat. Photon.7 817–24

[89] Xu F, Wang X, Zhu Y T and Zhu Y 2012 Wavy ribbons of carbon nanotubes for stretchable conductors Adv. Funct. Mater.22 1279–83

[90] Liu Q, Chen J, Li Y R and Shi G Q 2016 High-performance strain sensors with fish-scale-like graphene-sensing layers for full-range detection of human motions ACS Nano10 7901–6

[91] Hong S, Lee J, Do K, Lee M, Kim J H, Lee S and Kim D H 2017 Stretchable electrode based on laterally combed carbon nanotubes for wearable energy harvesting and storage devices Adv. Funct. Mater.27 1704353

[92] Kim D C, Shim H J, Lee W, Koo J H and Kim D H 2020 Material-based approaches for the fabrication of stretchable electronics Adv. Mater.32 1902743

[93] Lee J, Lee P, Lee H, Lee D, Lee S S and Ko S H 2012 Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel Nanoscale4 6408–14

[94] Lee H S, Kim Y W, Kim J E, Yoon S W, Kim T Y, Noh J S and Suh K S 2015 Synthesis of dimension-controlled silver nanowires for highly conductive and transparent nanowire films Acta Mater.83 84–90

[95] Nezakati T, Seifalian A, Tan A and Seifalian A M 2018 Conductive polymers: opportunities and challenges in biomedical applications Chem. Rev.118 6766–843

[96] Someya T, Bao Z and Malliaras G G 2016 The rise of plastic bioelectronics Nature540 379–85

[97] Gkoupidenis P, Schaefer N, Garlan B and Malliaras G G 2015 Neuromorphic functions in PEDOT:PSS organic electrochemical transistors Adv. Mater.27 7176–80

[98] ElMahmoudy M, Inal S, Charrier A, Uguz I, Malliaras G G and Sanaur S 2017 Tailoring the electrochemical and mechanical properties of PEDOT:PSS films for bioelectronics Macromol. Mater. Eng.302 1600497

[99] Xiao Y H, Cui X Y, Hancock J M, Bouguettaya M, Reynolds J R and Martin D C 2004 Electrochemical polymerization of poly(hydroxymethylated-3,4-ethylenedioxythiophene) (PEDOT-MeOH) on multichannel neural probes Sens. Actuators B 99 437–43

[100] Lu B Y, Yuk H, Lin S T, Jian N N, Qu K, Xu J K and Zhao X H 2019 Pure PEDOT:PSS hydrogels Nat. Commun.10 1043

[101] Jiang Y W et al 2022 Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics Science375 1411–7

[102] Yan T T, Li Z Q, Cao F, Chen J X, Wu L M and Fang X S 2022 An all-organic self-powered photodetector with ultraflexible dual-polarity output for biosignal detection Adv. Mater.34 2201303

[103] Yang C H and Suo Z G 2018 Hydrogel ionotronics Nat. Rev. Mater.3 125–42

[104] Zhou L P, Jiao X Y, Liu S Y, Hao M D, Cheng S Y, Zhang P X and Wen Y Q 2020 Functional DNA-based hydrogel intelligent materials for biomedical applications J. Mater. Chem. B 8 1991–2009

[105] Khalifehzadeh R and Ratner B D 2019 Trifluoromethyl-functionalized poly(lactic acid): a fluoropolyester designed for blood contact applications Biomater. Sci.7 3764–78

[106] Liu Y X et al 2019 Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation Nat. Biomed. Eng.3 58–68

[107] Zhang Y S and Khademhosseini A 2017 Advances in engineering hydrogels Science356 eaaf3627

[108] Liu Y P, Wang L L, Mi Y Y, Zhao S S, Qi S M, Sun M, Peng B, Xu Q, Niu Y C and Zhou Y 2022 Transparent stretchable hydrogel sensors: materials, design and applications J. Mater. Chem. C 10 13351–71

[109] Yuk H, Lu B Y, Lin S, Qu K, Xu J K, Luo J H and Zhao X H 2020 3D printing of conducting polymers Nat. Commun.11 1604

[110] Deng J, Yuk H, Wu J J, Varela C E, Chen X Y, Roche E T, Guo C F and Zhao X H 2021 Electrical bioadhesive interface for bioelectronics Nat. Mater.20 229–36

[111] Yin L et al 2022 A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic display Nat. Electron.5 694–705

[112] Xu Y et al 2023 In-ear integrated sensor array for the continuous monitoring of brain activity and of lactate in sweat Nat. Biomed. Eng.7 1307–20

[113] Yang Y et al 2020 A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat Nat. Biotechnol.38 217–24

[114] Wang L et al 2020 Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers Nat. Biomed. Eng.4 159–71

[115] Khatib M et al 2023 Spiral NeuroString: high-density soft bioelectronic fibers for multimodal sensing and stimulation bioRxiv

[116] Sahasrabudhe A et al 2023 Multifunctional microelectronic fibers enable wireless modulation of gut and brain neural circuits Nat. Biotechnol.42 892–904

[117] Liu J et al 2015 Syringe-injectable electronics Nat. Nanotechnol.10 629–36

[118] Hong G S, Fu T M, Zhou T, Schuhmann T G, Huang J L and Lieber C M 2015 Syringe injectable electronics: precise targeted delivery with quantitative input/output connectivity Nano Lett.15 6979–84

[119] Criscione J, Rezaei Z, Hernandez Cantu C M, Murphy S, Shin S R and Kim D H 2023 Heart-on-a-chip platforms and biosensor integration for disease modeling and phenotypic drug screening Biosens. Bioelectron.220 114840

[120] Lu C et al 2017 Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits Sci. Adv.3 e1600955

[121] Li Y C, Liu Y N, Peng B, Li X Y, Fang T S, Liu S, Liu J C, Li B and Li F 2022 Stretchable, conductive, breathable and moisture-sensitive e-skin based on CNTs/graphene/GelMA mat for wound monitoring Biomater. Adv.143 213172

[122] Wu P C, Pai C P, Lee M J and Lee W 2021 A single-substrate biosensor with spin-coated liquid crystal film for simple, sensitive and label-free protein detection Biosensors11 374

[123] Rathinamala I, Jeyakumaran N and Prithivikumaran N 2019 Sol-gel assisted spin coated CdS/PS electrode based glucose biosensor Vacuum161 291–6

[124] Fan S, Chang W, Fei C, Zhang Z G, Hou B B, Shi Z X, Wang H X and Hui Y C 2022 Stretchable and bendable textile matrix based on cellulose fibers for wearable self-powered glucose biosensors Cellulose29 8919–35

[125] Vargas E, Povedano E, Krishnan S, Teymourian H, Tehrani F, Campuzano S, Dassau E and Wang J 2020 Simultaneous cortisol/insulin microchip detection using dual enzyme tagging Biosens. Bioelectron.167 112512

[126] Wang J, Wang L R, Li G H, Yan D, Liu C H, Xu T L and Zhang X J 2022 Ultra-small wearable flexible biosensor for continuous sweat analysis ACS Sens.7 3102–7

[127] Pal J and Pal T 2015 Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis Nanoscale7 14159–90

[128] Zhou H C J and Kitagawa S 2014 Metal–organic frameworks (MOFs) Chem. Soc. Rev.43 5415–8

[129] Jiang D W, Ni D L, Rosenkrans Z T, Huang P, Yan X Y and Cai W B 2019 Nanozyme: new horizons for responsive biomedical applications Chem. Soc. Rev.48 3683–704

[130] Ma W J, Mao J J, Yang X T, Pan C, Chen W X, Wang M, Yu P, Mao L Q and Li Y D 2019 A single-atom Fe–N4 catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection Chem. Commun.55 159–62

[131] Inkpen M S, Liu Z F, Li H X, Campos L M, Neaton J B and Venkataraman L 2019 Non-chemisorbed gold–sulfur binding prevails in self-assembled monolayers Nat. Chem.11 351–8

[132] Song S P, Wang L H, Li J, Fan C H and Zhao J L 2008 Aptamer-based biosensors TrAC Trends Anal. Chem27 108–17

[133] Zhou W H, Jimmy Huang P J, Ding J S and Liu J W 2014 Aptamer-based biosensors for biomedical diagnostics Analyst139 2627–40

[134] Trilling A K, Beekwilder J and Zuilhof H 2013 Antibody orientation on biosensor surfaces: a minireview Analyst138 1619–27

[135] Sassolas A, Blum L J and Leca-Bouvier B D 2012 Immobilization strategies to develop enzymatic biosensors Biotechnol. Adv.30 489–511

[136] Palladino P, Minunni M and Scarano S 2018 Cardiac Troponin T capture and detection in real-time via epitope-imprinted polymer and optical biosensing Biosens. Bioelectron.106 93–98

[137] Yoshimi Y, Yagisawa Y, Yamaguchi R and Seki M 2018 Blood heparin sensor made from a paste electrode of graphite particles grafted with molecularly imprinted polymer Sens. Actuators B 259 455–62

[138] Parlak O, Keene S T, Marais A, Curto V F and Salleo A 2018 Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing Sci. Adv.4 eaar2904

[139] Gao Y J, Yu L T, Yeo J C and Lim C T 2020 Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability Adv. Mater.32 1902133

[140] Bae C W, Toi P T, Kim B Y, Lee W I, Lee H B, Hanif A, Lee E H and Lee N E 2019 Fully stretchable capillary microfluidics-integrated nanoporous gold electrochemical sensor for wearable continuous glucose monitoring ACS Appl. Mater. Interfaces11 14567–75

[141] Baker L B 2019 Physiology of sweat gland function: the roles of sweating and sweat composition in human health Temperature6 211–59

[142] Bariya M, Nyein H Y Y and Javey A 2018 Wearable sweat sensors Nat. Electron.1 160–71

[143] Beker L, Matsuhisa N, You I, Ruth S R A, Niu S M, Foudeh A, Tok J B H, Chen X D and Bao Z 2020 A bioinspired stretchable membrane-based compliance sensor Proc. Natl Acad. Sci. USA117 11314–20

[144] Lee H et al 2016 A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy Nat. Nanotechnol.11 566–72

[145] Chung H U et al 2020 Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units Nat. Med.26 418–29

[146] Bae C W, Chinnamani M V, Lee E H and Lee N E 2022 Stretchable non-enzymatic fuel cell-based sensor patch integrated with thread-embedded microfluidics for self-powered wearable glucose monitoring Adv. Mater. Interfaces9 2200492

[147] Kochmann S, Hirsch T and Wolfbeis O S 2012 Graphenes in chemical sensors and biosensors TRAC-Trends Anal. Chem.39 87–113

[148] Wang J 2005 Carbon-nanotube based electrochemical biosensors: a review Electroanalysis17 7–14

[149] Tlmaciu C M and Morris M C 2015 Carbon nanotube biosensors Front. Chem.3 59

[150] Ma J P, Bai W S and Zheng J B 2022 A novel self-cleaning electrochemical biosensor integrating copper porphyrin-derived metal-organic framework nanofilms, G-quadruplex, and DNA nanomotors for achieving cyclic detection of lead ions Biosens. Bioelectron.197 113801

[151] Stock N and Biswas S 2012 Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites Chem. Rev.112 933–69

[152] Furukawa H, Cordova K E, O'Keeffe M and Yaghi O M 2013 The chemistry and applications of metal-organic frameworks Science341 1230444

[153] Shu Y, Su T, Lu Q, Shang Z J, Xu Q and Hu X Y 2021 Highly stretchable wearable electrochemical sensor based on Ni-Co MOF nanosheet-decorated Ag/rGO/PU fiber for continuous sweat glucose detection Anal. Chem.93 16222–30

[154] Ouanes S and Popp J 2019 High cortisol and the risk of dementia and Alzheimer's disease: a review of the literature Front. Aging Neurosci.11 43

[155] Rosmond R and Bjrntorp P 2000 The hypothalamic–pituitary–adrenal axis activity as a predictor of cardiovascular disease, type 2 diabetes and stroke J. Intern. Med.247 188–97

[156] Chrousos G P 2004 Is 11-hydroxysteroid dehydrogenase type 1 a good therapeutic target for blockade of glucocorticoid actions? Proc. Natl Acad. Sci. USA101 6329–30

[157] Jiang D W et al 2018 Fabrication of stretchable copper coated carbon nanotube conductor for non-enzymatic glucose detection electrode with low detection limit and selectivity Polymers10 375

[158] Sun M M, Xin T, Ran Z Y, Pei X Y, Ma C B, Liu J, Cao M Z, Bai J and Zhou M 2021 A bendable biofuel cell-based fully integrated biomedical nanodevice for point-of-care diagnosis of scurvy ACS Sens.6 275–84

[159] Sun M M, Gu Y, Pei X Y, Wang J J, Liu J, Ma C B, Bai J and Zhou M 2021 A flexible and wearable epidermal ethanol biofuel cell for on-body and real-time bioenergy harvesting from human sweat Nano Energy86 106061

[160] Bi Y N, Sun M M, Wang J J, Zhu Z Y, Bai J, Emran M Y, Kotb A, Bo X J and Zhou M 2023 Universal fully integrated wearable sensor arrays for the multiple electrolyte and metabolite monitoring in raw sweat, saliva, or urine Anal. Chem.95 6690–9

[161] Sun M M, Pei X Y, Xin T, Liu J, Ma C B, Cao M Z and Zhou M 2022 A flexible microfluidic chip-based universal fully integrated nanoelectronic system with point-of-care raw sweat, tears, or saliva glucose monitoring for potential noninvasive glucose management Anal. Chem.94 1890–900

[162] Han G and Ceilley R 2017 Chronic wound healing: a review of current management and treatments Adv. Ther.34 599–610

[163] Powers J G, Higham C, Broussard K and Phillips T J 2016 Wound healing and treating wounds: chronic wound care and management J. Am. Acad. Dermatol.74 607–25

[164] Werdin F, Tenenhaus M and Rennekampff H O 2008 Chronic wound care Lancet372 1860–2

[165] Qiao B B, Pang Q, Yuan P Q, Luo Y L and Ma L 2020 Smart wound dressing for infection monitoring and NIR-triggered antibacterial treatment Biomater. Sci.8 1649–57

[166] Kassal P, Kim J, Kumar R, de Araujo W R, Steinberg I M, Steinberg M D and Wang J 2015 Smart bandage with wireless connectivity for uric acid biosensing as an indicator of wound status Electrochem. Commun.56 6–10

[167] Wang A S, Armstrong E J and Armstrong A W 2013 Corticosteroids and wound healing: clinical considerations in the perioperative period Am. J. Surg.206 410–7

[168] Sapienza P, Mingoli A, Borrelli V, Brachini G, Biacchi D, Sterpetti A V, Grande R, Serra R and Tartaglia E 2019 Inflammatory biomarkers, vascular procedures of lower limbs, and wound healing Int. Wound J.16 716–23

[169] Barrientos S, Stojadinovic O, Golinko M S, Brem H and Tomic-Canic M 2008 PERSPECTIVE ARTICLE: growth factors and cytokines in wound healing Wound Repair. Regen.16 585–601

[170] Gottrup F 2004 Oxygen in wound healing and infection World J. Surg.28 312–5

[171] Wang L R, Zhou M Y, Xu T L and Zhang X J 2022 Multifunctional hydrogel as wound dressing for intelligent wound monitoring Chem. Eng. J.433 134625

[172] Shirzaei Sani E et al 2023 A stretchable wireless wearable bioelectronic system for multiplexed monitoring and combination treatment of infected chronic wounds Sci. Adv.9 eadf7388

[173] Kamoun E A, Kenawy E R S and Chen X 2017 A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings J. Adv. Res.8 217–33

[174] Xu Z J, Han S Y, Gu Z P and Wu J 2020 Advances and impact of antioxidant hydrogel in chronic wound healing Adv. Healthcare Mater.9 1901502

[175] Liang Y P, He J H and Guo B L 2021 Functional hydrogels as wound dressing to enhance wound healing ACS Nano15 12687–722

[176] Koehler J, Brandl F P and Goepferich A M 2018 Hydrogel wound dressings for bioactive treatment of acute and chronic wounds Eur. Polym. J.100 1–11

[177] Zhou L P, Pi W, Cheng S Y, Gu Z, Zhang K X, Min T T, Zhang W M, Du H W, Zhang P X and Wen Y Q 2021 Multifunctional DNA hydrogels with hydrocolloid-cotton structure for regeneration of diabetic infectious wounds Adv. Funct. Mater.31 2106167

[178] Zhou L P, Zeng Z H, Liu S Y, Min T T, Zhang W M, Bian X C, Du H W, Zhang P X and Wen Y Q 2022 Multifunctional DNA hydrogel enhances stemness of adipose-derived stem cells to activate immune pathways for guidance burn wound regeneration Adv. Funct. Mater.32 2207466

[179] Naficy S, Oveissi F, Patrick B, Schindeler A and Dehghani F 2018 Printed, flexible ph sensor hydrogels for wet environments Adv. Mater. Technol.3 1800137

[180] Chiu Y L, Chen S A, Chen J H, Chen K J, Chen H L and Sung H W 2010 A dual-emission frster resonance energy transfer nanoprobe for sensing/imaging pH changes in the biological environment ACS Nano4 7467–74

[181] Yuan L, Lin W Y, Zheng K B and Zhu S S 2013 FRET-based small-molecule fluorescent probes: rational design and bioimaging applications Acc. Chem. Res.46 1462–73

[182] Hou Y, Zhou J, Gao Z Y, Sun X Y, Liu C Y, Shangguan D H, Yang W S and Gao M Y 2015 Protease-activated ratiometric fluorescent probe for pH mapping of malignant tumors ACS Nano9 3199–205

[183] Tricoli A, Nasiri N and De S Y 2017 Wearable and miniaturized sensor technologies for personalized and preventive medicine Adv. Funct. Mater.27 1605271

[184] Broza Y Y, Zhou X, Yuan M M, Qu D Y, Zheng Y B, Vishinkin R, Khatib M, Wu W W and Haick H 2019 Disease detection with molecular biomarkers: from chemistry of body fluids to nature-inspired chemical sensors Chem. Rev.119 11761–817

[185] Kolluru C, Williams M, Chae J and Prausnitz M R 2019 Recruitment and collection of dermal interstitial fluid using a microneedle patch Adv. Healthcare Mater.8 1801262

[186] De la Paz E, Barfidokht A, Rios S, Brown C, Chao E and Wang J 2021 Extended noninvasive glucose monitoring in the interstitial fluid using an epidermal biosensing patch Anal. Chem.93 12767–75

[187] Miller P R et al 2018 Extraction and biomolecular analysis of dermal interstitial fluid collected with hollow microneedles Commun. Biol.1 173

[188] Saifullah K M and Faraji Rad Z 2023 Sampling dermal interstitial fluid using microneedles: a review of recent developments in sampling methods and microneedle-based biosensors Adv. Mater. Interfaces10 2201763

[189] Mohan A M V, Windmiller J R, Mishra R K and Wang J 2017 Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays Biosens. Bioelectron.91 574–9

[190] Goud K Y, Moonla C, Mishra R K, Yu C M, Narayan R, Litvan I and Wang J 2019 Wearable electrochemical microneedle sensor for continuous monitoring of levodopa: toward parkinson management ACS Sens.4 2196–204

[191] Park H, Park W and Lee C H 2021 Electrochemically active materials and wearable biosensors for the in situ analysis of body fluids for human healthcare NPG Asia Mater.13 23

[192] Bandodkar A J, Jia W Z, Yardmc C, Wang X, Ramirez J and Wang J 2015 Tattoo-based noninvasive glucose monitoring: a proof-of-concept study Anal. Chem.87 394–8

[193] Kim J, Sempionatto J R, Imani S, Hartel M C, Barfidokht A, Tang G D, Campbell A S, Mercier P P and Wang J 2018 Simultaneous monitoring of sweat and interstitial fluid using a single wearable biosensor platform Adv. Sci.5 1800880

[194] Mannoor M S, Tao H, Clayton J D, Sengupta A, Kaplan D L, Naik R R, Verma N, Omenetto F G and McAlpine M C 2012 Graphene-based wireless bacteria detection on tooth enamel Nat. Commun.3 763

[195] Kim J et al 2017 Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics Nat. Commun.8 14997

[196] Ilea A et al 2019 Saliva, a magic biofluid available for multilevel assessment and a mirror of general health—a systematic review Biosensors9 27

[197] Ngamchuea K, Batchelor-mcauley C, Cowen P J, Williams C, Gonalves L M and Compton R G 2016 Can saliva testing replace blood measurements for health monitoring? Insights from a correlation study of salivary and whole blood glutathione in humans Analyst141 4707–12

[198] Kim J, Imani S, de Araujo W R, Warchall J, Valds-Ramrez G, Paixo T R L C, Mercier P P and Wang J 2015 Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics Biosens. Bioelectron.74 1061–8

[199] Tiffany J M 2003 Tears in health and disease Eye17 923–6

[200] Keum D H et al 2020 Wireless smart contact lens for diabetic diagnosis and therapy Sci. Adv.6 eaba3252

[201] Kownacka A E et al 2018 Clinical evidence for use of a noninvasive biosensor for tear glucose as an alternative to painful finger-prick for diabetes management utilizing a biopolymer coating Biomacromolecules19 4504–11

[202] Wu H, Denna T H, Storkersen J N and Gerriets V A 2019 Beyond a neurotransmitter: the role of serotonin in inflammation and immunity Pharmacol. Res.140 100–14

[203] Bochicchio A, Brandner A F, Engberg O, Huster D and Bckmann R A 2020 Spontaneous membrane nanodomain formation in the absence or presence of the neurotransmitter serotonin Front. Cell Dev. Biol.8 601145

[204] Goldberg J I and Kater S B 1989 Expression and function of the neurotransmitter serotonin during development of the Helisoma nervous system Dev. Biol.131 483–95

[205] Bckman L, Lindenberger U, Li S C and Nyberg L 2010 Linking cognitive aging to alterations in dopamine neurotransmitter functioning: recent data and future avenues Neurosci. Biobehav. Rev.34 670–7

[206] Blokland A 1995 Acetylcholine: a neurotransmitter for learning and memory? Brain Res. Rev.21 285–300

[207] Hong G S and Lieber C M 2019 Novel electrode technologies for neural recordings Nat. Rev. Neurosci.20 330–45

[208] Clark J J et al 2010 Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals Nat. Methods7 126–9

[209] Won S M, Song E M, Zhao J, Li J H, Rivnay J and Rogers J A 2018 Recent advances in materials, devices, and systems for neural interfaces Adv. Mater.30 1800534

[210] Vzquez-Guardado A, Yang Y Y, Bandodkar A J and Rogers J A 2020 Recent advances in neurotechnologies with broad potential for neuroscience research Nat. Neurosci.23 1522–36

[211] Minev I R et al 2015 Electronic dura mater for long-term multimodal neural interfaces Science347 159–63

[212] Kozai T D Y, Jaquins-Gerstl A S, Vazquez A L, Michael A C and Cui X T 2015 Brain tissue responses to neural implants impact signal sensitivity and intervention strategies ACS Chem. Neurosci.6 48–67

[213] Wassum K M, Tolosa V M, Wang J J, Walker E, Monbouquette H G and Maidment N T 2008 Silicon wafer-based platinum microelectrode array biosensor for near real-time measurement of glutamate in vivo Sensors8 5023–36

[214] Tolosa V M, Wassum K M, Maidment N T and Monbouquette H G 2013 Electrochemically deposited iridium oxide reference electrode integrated with an electroenzymatic glutamate sensor on a multi-electrode arraymicroprobe Biosens. Bioelectron.42 256–60

[215] Liu G, Lv Z Y, Batool S, Li M Z, Zhao P F, Guo L C, Wang Y, Zhou Y and Han S T 2023 Biocompatible material-based flexible biosensors: from materials design to wearable/implantable devices and integrated sensing systems Small19 2207879

[216] Wu B C, Cao B, Taylor I M, Woeppel K and Cui X T 2019 Facile synthesis of a 3,4-ethylene-dioxythiophene (EDOT) derivative for ease of bio-functionalization of the conducting polymer PEDOT Front. Chem.7 178

[217] Zhang L et al 2020 Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring Nat. Commun.11 4683

[218] Luan L et al 2017 Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration Sci. Adv.3 e1601966

[219] Fith R, Mrton A L, Mtys F, Pinke D, Mrton G, Tth K and Ulbert I 2019 Slow insertion of silicon probes improves the quality of acute neuronal recordings Sci. Rep.9 111

[220] Lu T, Ji S R, Jin W Q, Yang Q S, Luo Q Q and Ren T L 2023 Biocompatible and long-term monitoring strategies of wearable, ingestible and implantable biosensors: reform the next generation healthcare Sensors23 2991

[221] Lee D, Park K and Seo J 2020 Recent advances in anti-inflammatory strategies for implantable biosensors and medical implants BioChip J.14 48–62

[222] Baumgart D C and Carding S R 2007 Inflammatory bowel disease: cause and immunobiology Lancet369 1627–40

[223] Horwitz B J and Fisher R S 2001 The irritable bowel syndrome New Engl. J. Med.344 1846–50

[224] Neu J and Walker W A 2011 Necrotizing enterocolitis New Engl. J. Med.364 255–64

[225] Current W L and Garcia L S 1991 Cryptosporidiosis Clin. Microbiol. Rev.4 325–58

[226] Pang T, Leach S T, Katz T, Day A S and Ooi C Y 2014 Fecal biomarkers of intestinal health and disease in children Front. Pediatr.2 6

[227] Coste B, Mathur J, Schmidt M, Earley T J, Ranade S, Petrus M J, Dubin A E and Patapoutian A 2010 Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels Science330 55–60

[228] Chin A, Svejda B, Gustafsson B I, Granlund A B, Sandvik A K, Timberlake A, Sumpio B, Pfragner R, Modlin I M and Kidd M 2012 The role of mechanical forces and adenosine in the regulation of intestinal enterochromaffin cell serotonin secretion Am. J. Physiol.—Gastrointest. Liver Physiol.302 G397–G405

[229] Furness J B 2012 The enteric nervous system and neurogastroenterology Nat. Rev. Gastroenterol. Hepatol.9 286–94

[230] Raghupathi R, Duffield M D, Zelkas L, Meedeniya A, Brookes S J H, Sia T C, Wattchow D A, Spencer N J and Keating D J 2013 Identification of unique release kinetics of serotonin from guinea-pig and human enterochromaffin cells J. Physiol.591 5959–75

[231] Liu J et al 2024 Bioresorbable shape-adaptive structures for ultrasonic monitoring of deep-tissue homeostasis Science383 1096–103

[232] Liu Y M et al 2022 Stretchable sweat-activated battery in skin-integrated electronics for continuous wireless sweat monitoring Adv. Sci.9 2104635

Xing Yi, Wang Jiaqi, Li Jinxing. Design and manufacturing of soft electronics for in situ biochemical sensing[J]. International Journal of Extreme Manufacturing, 2024, 6(6): 62005
Download Citation