• Optoelectronics Letters
  • Vol. 18, Issue 9, 566 (2022)
Penghai LI* and Cong LIU
Author Affiliations
  • School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
  • show less
    DOI: 10.1007/s11801-022-2054-1 Cite this Article
    LI Penghai, LIU Cong. Research on recognition of O-MI based on CNN combined with SST and LSTM[J]. Optoelectronics Letters, 2022, 18(9): 566 Copy Citation Text show less
    References

    [1] MANE R, CHOUHAN T, GUAN C. BCI for stroke rehabilitation:motor and beyond[J]. Journal of neural engineering, 2020, 17(4):041001.

    [2] KANEKO N, SASAKI A, YOKOYAMA H, et al. Effects of action observation and motor imagery of walking on the corticospinal and spinal motoneuron excitability and motor imagery ability in healthy participants[J]. Plos one, 2022, 17(4):e0266000.

    [3] STOLBKOV Y K, GERASIMENKO Y P. Cognitive motor rehabilitation:imagination and observation of motor actions[J]. Human physiology, 2021, 47(1): 104-112.

    [4] STOLBKOV Y K, GERASIMENKO Y P. Observation of motor actions as a tool for motor rehabilitation[J]. Neuroscience and behavioral physiology, 2021, 51(7): 1018-1026.

    [5] TORRISI M, MAGGIO M G, COLA M, et al. Beyond motor recovery after stroke:the role of hand robotic rehabilitation plus virtual reality in improving cognitive function[J]. Journal of clinical neuroscience, 2021, 92(9859):11-16.

    [6] DAUBECHIES I, LU J, WU H T. Synchrosqueezed wavelet transforms:an empirical mode decomposition-like tool[J]. Applied and computational harmonic analysis, 2011, 30(2):243-261.

    [7] MANDHOUJ B, CHERNI M A, SAYADI M. An automated classification of EEG signals based on spectrogram and CNN for epilepsy diagnosis[J]. Analog integrated circuits and signal processing, 2021, 108(1): 101-110.

    [8] ONO Y, WADA K, KURATA M, et al. Enhancement of motor-imagery ability via combined action observation and motor-imagery training with proprioceptive neurofeedback[J]. Neuropsychologia, 2018, 114(1):134-142.

    [9] XIE J, PENG M, LU J, et al. Enhancement of event-related desynchronization in motor imagery based on transcranial electrical stimulation[J]. Frontiers in human neuroscience, 2021, 15(1):141-147.

    [10] NAGAI H, TANAKA T. Action observation of own hand movement enhances event-related desynchronization[J]. IEEE transactions on neural systems and rehabilitation engineering, 2019, 27(7):1407-1415.

    [11] KINOSHITA T, FUJIWARA K, KANO M, et al. Sleep spindle detection using RUSBoost and synchrosqueezed wavelet transform[J]. IEEE transactions on neural systems and rehabilitation engineering, 2020, 28(2): 390-398.

    [12] SHEYKHIVAND S, MOUSAVI Z, REZAII T Y, et al. Recognizing emotions evoked by music using CNN-LSTM networks on EEG signals[J]. IEEE access, 2020, 8(1):139332-139345.

    [13] SHOEIBI A, SADEGHI D, MORIDIAN P, et al. Automatic diagnosis of schizophrenia in EEG signals using CNN-LSTM models[J]. Frontiers in neuroinformatics, 2021, 15(1):1-7.

    [14] XU G, REN T, CHEN Y, et al. A one-dimensional CNN-LSTM model for epileptic seizure recognition using EEG signal analysis[J]. Frontiers in neuroscience, 2020, 14(1):1253-1259.

    [15] SIMAR C, PETIEAU M, CEBOLLA A, et al. EEG-based brain-computer interface for alpha speed control of a small robot using the MUSE headband[C]//2020 International Joint Conference on Neural Networks, July 19-24, 2020, Glasgow, UK. New York:IEEE, 2020:1-4.

    [16] DAI G, ZHOU J, HUANG J, et al. HS-CNN:a CNN with hybrid convolution scale for EEG motor imagery classification[J]. Journal of neural engineering, 2020, 17(1):016025.1-016025.11.

    [17] HWAIDI J F, CHEN T M. Classification of motor imagery EEG signals based on deep autoencoder and convolutional neural network approach[J]. IEEE access, 2022, 10(1):48071-48081.

    [18] KHADEMI Z, EBRAHIMI F, KORDY H M. A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals[J]. Computers in biology and medicine, 2022, 143(1):105288.

    [19] AMIN S U, ALSULAIMAN M, MUHAMMAD G, et al. Deep learning for EEG motor imagery classification based on multi-layer CNNs feature fusion[J]. Future generation computer systems, 2019, 101(1):542-554.

    [20] SINGHAL V, MATHEW J, BEHERA R K. Detection of alcoholism using EEG signals and a CNN-LSTM-ATTN network[J]. Computers in biology and medicine, 2021, 138(1):104940.

    [21] LI H, DING M, ZHANG R, et al. Motor imagery EEG classification algorithm based on CNN-LSTM feature fusion network[J]. Biomedical signal processing and control, 2022, 72(1):103342.

    [22] JEONG J H, SHIM K H, KIM D J, et al. Brain-controlled robotic arm system based on multi-directional CNN-BiLSTM network using EEG signals[J]. IEEE transactions on neural systems and rehabilitation engineering, 2020, 28(5):1226-1238.

    [23] KAI K A, ZHANG Y C, ZHANG H, et al. Filter bank common spatial pattern (FBCSP) in brain-computer interface[C]//2008 IEEE International Joint Conference on Neural Networks, June 1-8, 2008, Hong Kong, China. New York:IEEE, 2008:2390-2397.

    [24] MA X, WANG D, LIU D, et al. DWT and CNN based multi-class motor imagery electroencephalographic signal recognition[J]. Journal of neural engineering, 2020, 17(1):016073.

    LI Penghai, LIU Cong. Research on recognition of O-MI based on CNN combined with SST and LSTM[J]. Optoelectronics Letters, 2022, 18(9): 566
    Download Citation