• Journal of Synthetic Crystals
  • Vol. 49, Issue 11, 2139 (2020)
WANG Yanfeng1,2,* and WANG Hongxing1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    WANG Yanfeng, WANG Hongxing. Research Progress of MPCVD Single Crystal Diamond Growth and Diamond Electronic Devices[J]. Journal of Synthetic Crystals, 2020, 49(11): 2139 Copy Citation Text show less
    References

    [1] Saha N C, Oishi T, Kim S, et al. 145MW/cm2 heteroepitaxial diamond MOSFETs with NO2 ptype doping and an Al2O3 passivation Layer[J]. IEEE Electron Device Letters,2020,11:99.

    [2] Liu H, Li J J, Li Z R, et al. Single crystal diamond deposited by dual radiofrequency plasma jet CVD with high growth rate[J]. Crystals,2019,9(1):19.

    [3] Akashi N, Fujimaki N, Shikata S. Influence of threading dislocations on diamond Schottky barrier diode characteristics[J]. Diamond and Related Materials,2020,109:108024.18.

    [4] Fei W X, Bi T, Iwataki M, et al. Oxidized Si terminated diamond and its MOSFET operation with SiO2 gate insulator[J]. Applied Physics Letters,2020,116(21):212103.14.

    [5] Liu J W, Teraji T, Da B, et al. Effect of annealing temperature on performances of borondoped diamond metalsemiconductor fieldeffect transistors[J]. IEEE Transactions on Electron Devices,2020,67(4):99.

    [7] Liu W Q, Ma H A, Li X L, et al. Effects of additive Al on the HPHT diamond synthesis in an FeMnC system[J].Diamond and Related Materials,2007,16(8):14861489.

    [8] Chicot G, Marechal A, Motte R, et al. Metal oxide semiconductor structure using oxygenterminated diamond[J].Applied Physics Letters,2013,102(24):242108.15.

    [9] Sasama Y, Komatsu K, Moriyama S, et al. Highmobility diamond field effect transistor with a monocrystalline hBN gate dielectric[J]. APL Materials, 2018,6:111105.18.

    [10] Lloret F, Araujo D, Eon D, et al. Influence of methane concentration on MPCVD overgrowth of 100oriented etched diamond substrates[J].Physica Status Solidi,2016,213(10):25702574.

    [11] Sussmann S R. CVD diamond for electronic devices and sensors[M].UK:John Wiley & Sons Ltd,2009:108111

    [12] Yu S W, Wang R, Zheng K, et al. Influence of power density on high purity 63 mm diameter polycrystalline diamond deposition inside a 2.45 GHz MPCVD reactor[J].Journal of Physics D Applied Physics,2016,49(35):355202.

    [13] Liang Q, Yan C S, Lai J, et al. Large area singlecrystal diamond synthesis by 915 MHz microwave plasmaassisted chemical vapor deposition[J].Crystal Growth and Design,2014,14(7):32343238.

    [17] Tallaire A, Achard J, Boussadi A, et al. High quality thick CVD diamond films homoepitaxially grown on (111)oriented Substrates[J].Diamond and Related Materials,2014,41(1):3440.

    [19] Nad S, Gu Y, Asmussen J. Growth strategies for large and high quality single crystal diamond substrates[J].Diamond and Related Materials,2015,60:2634.

    [20] Nad S, Asmussen J. Analyses of single crystal diamond substrates grown in a pocket substrate holder via MPACVD[J].Diamond and Related Materials,2016,66:3646.

    [21] Achard J, Tallaire A, Sussmann R, et al. The control of growth parameters in the synthesis of highquality single crystalline diamond by CVD[J].Journal of Crystal Growth,2005,284(3/4):396405.

    [22] Tallaire A, Achard J, Silva F, et al. Homoepitaxial deposition of highquality thick diamond films: effect of growth parameters[J].Diamond and Related Materials,2005,14(3):249254.

    [23] Yan C S, Vohra Y K, Mao H K. Very high growth rate chemical vapor deposition of singlecrystal diamond[J].Proceedings of the National Academy of Sciences of the United States of America,2002,99(20):1252312525.

    [24] Takeuchi D, Yamanaka S, Watanabe H, et al. High quality homoepitaxial diamond thin film synthesis with high growth rate by a twostep growth method[J].Diamond and Related Materials,1999,8(6):10461049.

    [25] Mokuno Y, Kato Y, Tsubouchi N, et al. A nitrogen doped lowdislocation density freestanding single crystal diamond plate fabricated by a liftoff process[J].Applied Physics Letters,2014,104(25):252109252109.

    [26] Teraji T. Highquality and highpurity homoepitaxial diamond (100) film growth under high oxygen concentration condition[J].Journal of Applied Physics,2015,118(11):115304.18.

    [27] Ohmagari S, Yamada H, Tsubouchi N, et al. Large reduction of threading dislocations in diamond by hotfilament chemical vapor deposition accompanying W incorporations[J].Applied Physics Letters,2018,113(3):032108.14.

    [29] Yamamoto H, Naoi Y, Fujii Y. Lateral overgrowth of diamond films on metal masked substrate by microwave plasma chemical vapor deposition[J].International Journal of Modern Physics B,2002,16(6):841844.

    [30] Washiyama S, Mita S, Suzuki K, et al. Coalescence of epitaxial lateral overgrowthdiamond on stripepatterned nucleation on Ir/MgO(001)[J].Applied Physics Express,2011,4(9):095502.13.

    [31] Ichikawa K, Kodama H, Suzuki K, et al. Effect of stripe orientation on dislocation propagation in epitaxial lateral overgrowth diamond on Ir[J].Diamond and Related Materials,2017,72:114118.

    [32] Lin F N, Zhang J W, Wang X L, et al. Fabrication of low dislocation density singlecrystalline diamond via twostep epitaxial lateral overgrowth[J].Crystals,2017,7(4):114.17.

    [33] Wang Y F, Chang X H, Liu Z C, et al. Lateral overgrowth of diamond film on stripes patterned Ir/HPHTdiamond substrate[J].Journal of Crystal Growth,2018,489:5156.

    [34] Geis M W, Smith H I, Argoitia A, et al. Large area mosaic diamond films approaching single crystal quality[J].Applied Physics Letters,1991,58(22):24852487.

    [35] Samlenski R, Gartner H, Locher R, et al. Liftofftechnique of singlecrystal diamond plates: study of the lattice damage of the implanted substrates and the crystalline quality of the homoepitaxial films by ion channeling[J].Diamond and Related Materials,1997,6(1):149152.

    [36] Yamada H, Chayahara A, Mokuno Y, et al. Developments of elemental technologies to produce inchsize singlecrystal diamond wafers[J].Diamond and Related Materials,2011,20(4):616619.

    [37] Yamada H, Chayahara A, Mokuno Y, et al. A 2in. mosaic wafer made of a singlecrystal diamond[J].Applied Physics Letters,2014,104(10):102110.14.

    [39] Ohmagari S, Yamada H, Tsubouchi N, et al. Schottky barrier diodes fabricated on diamond mosaic wafers: dislocation reduction to mitigate the effect of coalescence boundaries[J].Applied Physics Letters,2019,114(8):082104.15.

    [41] Mokuno Y, Chayahara A, Soda Y, et al. Synthesizing singlecrystal diamond by repetition of high rate homoepitaxial growth by microwave plasma CVD[J].Diamond and Related Materials,2005,14(1112):17431746.

    [42] Mokuno Y, Chayahara A, Yamada H, et al. Improving purity and size of singlecrystal diamond plates produced by highrate CVD growth and liftoff process using ion implantation[J].Diamond and Related Materials,2009,18(10):12581261.

    [44] Sawabe A, Inuzuka T. Growth of diamond thin films by electron assisted chemical vapor deposition[J].Applied Physics Letters,1985,46:146147.

    [45] Schreck M, Gsell S, Brescia R, et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers[J].Scientific Reports,2017,7:44462.18.

    [46] Ekimov E A, Sidorov V A, Bauer E D. Superconductivity in diamond[J].Nature,2004,428:542545.

    [47] Tavares C, Omnes F, Pernot J, et al. Electronic properties of borondoped {111}oriented homoepitaxial diamond layers[J].Diamond and Related Materials,2006,15:582585.

    [49] Farrer R G. On the substitutional nitrogen donor in diamond[J].Solid State Commun,1969,7(9):685688.

    [50] Kajihara S A, Antonelli A, Bernhole J, et al. Nitrogen and potential ntype dopants in diamond[J].Physical Review Letters,1991,66(15),20102013.

    [51] Wang L G, Zunger A. Phosphorus and sulphur doping of diamond[J].Physical Review B,2002, 66(16):161202.14.

    [52] Goss J P, Briddon P R, Jones R, et al. Donor and acceptor states in diamond[J].Diamond and Related Materials,2004,13(48):684690.

    [53] Chernyshev V A, Meijer J, Grambole D, et al. ntype diamond produced by MeV lithium implantation in channeling direction[J].Diamond and Related Materials,2008,17(11):19331935.

    [54] Pinault M A, Barjon J, Kociniewski T, et al. The ntype doping of diamond: Present status and pending questions[J].Physica B: Condensed Matter,2007,401:5156.

    [55] Goss J P, Eyre R J, Briddon P R. A theoretical study of Li as ntype dopants for diamond: the role of aggregation, physica status solidi (a),2007,204(9):29782984.

    [56] Goss J P, Briddon P R. Theoretical study of Li and Na as ntype dopants for diamond[J].Physical Review B,2007,75(7),075202.

    [57] Dai Y, Dai D, Yan C., et al. Ntype electric conductivity of nitrogendoped ultrananocrystalline diamond films[J].Physical Review B,2005,71(7):075421.

    [58] Koizumi S, Kamo M, Sato Y, et al. Growth and characterization of phosphorous doped {111} homoepitaxial diamond thin film[J].Applied Physics Letters,1997,71(8):10651067.

    [59] Kato H, Ogura M, Makino T, et al. Ntype control of singlecrystal diamond films by ultralightly phosphorus doping[J].Applied Physics Letters,2016,109:142102.15.

    [60] Isberg J, Hammersberg J, Johansson E, et al. High carrier mobility in singlecrystal plasmadeposited diamond[J].Science,2002,297(5587):1670.

    [61] Su H, Wang J H, Xiong L W, et al. Semiconductor application of doped nanocrystalline diamond film[J].Journal of Wuhan Institute of Technology,2011,33(10):68.

    [62] Li R B, Hu X J, Shen H S, et al. Codoping of diamond with boron and sulfur[J].Journal of Materials Science,2004,39(3):11351137.

    [63] Braun F. Ueber die Stromleitung durch Schwefelmetalle[J].Annalen der Physik,1875,23:556563.

    [64] Twitchen D J, Whitehead A J, Coe S E, et al. Highvoltage singlecrystal diamond diodes[J].IEEE Transactions on Electron Devices,2004,51(5):826828.

    [65] Teraji T, Koizumi S, Koide Y, et al. Electric field breakdown of lateral Schottky diodes of diamond[J].Japanese Journal of Applied Physics,2007,46(9):L196L198.

    [66] Umezawa H, Nagase M, Kato Y, et al. High temperature application of diamond power device[J].Diamond and Related Materials,2012,24(24):201205.

    [67] Traore A, Muret P, Fiori A, et al. Zr/oxidized diamond interface for high power Schottky diodes[J].Applied Physics Letters,2014, 104:052105.14.

    [68] Zhao D, Hu C, Li Z C, et al. Diamond MIP structure Schottky diode with different drift layer thickness[J].Diamond and Related Materials,2017,73:1218.

    [69] Bormashov V S, Terentiev S A, Buga S G, et al. Thin large area vertical Schottky barrier diamond diodes with low onresistance made by ionbeam assisted liftoff technique[J].Diamond and Related Materials,2017,75:7884.

    [70] Zhao D, Liu Z C, Zhang X F, et al. Analysis of diamond pseudovertical Schottky barrier diode through patterning tungsten growth method[J].Applied Physics Letters,2018,112:092102.14.

    [71] Zhao D, Liu Z C, Wang W, et al. Fabrication of dualtermination Schottky barrier diode by using oxygen/fluorineterminated diamond[J].Applied Surface Science,2018,457:411416.

    [72] Zhao D, Liu Z C, Wang W, et al. Reduction in reverse leakage current of diamond vertical Schottky barrier diode using SiNX field plate structure[J].Results in Physics,2019,13:102250.13.

    [73] Pakes I C, Garrido J A, Kawarada H. Diamond surface conductivity: Properties, devices, and sensors[J].Materials Research Society Bulletin,2014,39(6):542548.

    [74] Hirama K, Takayanagi H, Yamauchi S, et al. Highperformance pchannel diamond MOSFETs with alumina gate insulator[C].IEEE International Electron Devices Meeting,San Francisco,USA,December 1517, 2008.

    [75] Riedel M, Ristein J, Ley L. Recovery of surface conductivity of Hterminated diamond after thermal annealing in vacuum[J].Physical Review. B,2004,69(12):125338.18.

    [76] Kawarada H, Aoki M, Ito M. Enhancement mode metalsemiconductor field effect transistors using homoepitaxial diamonds[J].Applied Physics Letters,1994,65(12):1563.

    [77] Hokazono A, Tsugawa K, Umezana H, et al. Surface pchannel metaloxidesemiconductor field effect transistors fabricated on hydrogen terminated (001) surfaces of diamond[J].Solid State Electronics,1999,43(8):14651471.

    [78] Ueda K, Kasu M, Yamauchi Y, et al. Diamond FET using highquality polycrystalline diamond with fT of 45 GHz and fmax of 120 GHz[J].IEEE Electron Device Letters,2006,27(7):570572.

    [79] Russell A O S, Sharabi S, Tallaire A, et al. Hydrogenterminated diamond fieldeffect transistors with cutoff frequency of 53 GHz[J].IEEE Electron Device Letters,2012,33(10):14711473.

    [80] Kawarada H, Tsuboi H, Naruo T, et al. CH surface diamond field effect transistors for high temperature (400 ℃) and high voltage (500 V) operation[J].Applied Physics Letters,2014,105(1):013510.14.

    [81] Kawarada H, Yamada T, Xu D, et al. Diamond MOSFETs using 2D hole gas with 1 700 V breakdown voltage[C].International Symposium on Power Semiconductor Devices & ICs,Prague,Czech Republic,June 1216, 2016.

    [82] Zhang J F, Ren Z Y, Zhang J C, et al. Characterization and mobility analysis of MoO3gated diamond MOSFET[J].Japanese Journal of Applied Physics,2017,56:100301.14.

    [83] Yu X X, Zhou J J, Qi C J, et al. A High frequency hydrogenterminated diamond MISFET with fT/fmax of 70/80 GHz[J].IEEE Electron Device Letters,2018,39(9):13731376.

    [84] Wang Y F, Wang W, Chang X H, et al. Hydrogenterminated diamond fieldeffect transistor with a bilayer dielectric of HfSiO4/Al2O3[J].Diamond and Related Materials,2019,99:107530.15.

    [85] Zhou C J, Wang J J, Guo J C, et al. Radiofrequency performance of hydrogenated diamond MOSFETs with alumina[J].Applied Physics Letters,2019,114:063501.15

    [86] Yu C, Zhou C J, Guo J C, et al. 650 mW/mm output power density of Hterminated polycrystalline diamond MISFET at 10 GHz[J].IET Electronics Letters,2020,56(7):334335..

    [87] Wang Y F, Wang W, Abbasi H N, et al. LiF/Al2O3 as dielectrics for MOSFET on single crystal hydrogen hydrogenterminated diamond[J].IEEE Electron Device Letters,2020,41(6):808811.

    [88] Salvatori S, Scala A D, Rossi M C, et al. Optimized contactstructures for metal diamond metal UVdetectors[J].Diamond and Related Materials,2002,11(3):458462.

    [89] Oh A, Caylar B, Pomorski M, et al. A novel detector with graphitic electrodes in CVD diamond[J].Diamond and Related Materials,2013,38:913.

    [90] Yao K, Yang C, Zang X, et al. Carbon SP2SP3 technology: grapheneondiamond thin film UV detector[C].IEEE International Conference on Micro Electro Mechanical Systems. IEEE,2014.

    [91] Liu Z C, Ao J P, Li F N, et al. Fabrication of three dimensional diamond ultraviolet photodetector through downtop method[J].Applied Physics Letters,2016,109:153507.

    [92] Liu Z C, Lin F, Zhao D, et al. Fabrication and characterization of (100)oriented single crystal diamond pin junction ultraviolet detector[J].Physics Status Solidi A,2020,2000207:14.

    CLP Journals

    [1] WANG Ruozheng, YAN Xiuliang, PENG Bo, LIN Fang, WEI Qiang, WANG Hongxing. Homoepitaxial Boron Doped Single Crystal Diamond and Its Electrical Properties[J]. Journal of Synthetic Crystals, 2022, 51(5): 893

    [2] LI Yicun, WEN Dongyue, HAO Xiaobin, DAI Bing, LIU Benjian, ZHU Jiaqi, HAN Jiecai. Control of Defects in MPCVD Single Crystal Diamond Growth Based on Metal Catalyzed Plasma Etching[J]. Journal of the Chinese Ceramic Society, 2023, 51(6): 1374

    [3] NIU Keyan, ZHANG Xuan, CUI Boyao, MA Yongjian, TANG Wenbo, WEI Zhipeng, ZHANG Baoshun. p-Type and n-Type Doping of Single Crystal Diamond[J]. Journal of Synthetic Crystals, 2022, 51(5): 841

    [4] PENG Bo, LI Qi, ZHANG Shumiao, FAN Shuwei, WANG Ruozheng, WANG Hongxing. Research Progress of Diamond Schottky Barrier Diodes[J]. Journal of Synthetic Crystals, 2023, 52(5): 732

    [5] ZHANG Rui, YU Wenqiang. Preparation of B-S Co-Doped Single Crystal Diamond by High Temperature Diffusion Method[J]. Journal of Synthetic Crystals, 2023, 52(1): 41

    WANG Yanfeng, WANG Hongxing. Research Progress of MPCVD Single Crystal Diamond Growth and Diamond Electronic Devices[J]. Journal of Synthetic Crystals, 2020, 49(11): 2139
    Download Citation