• Optical Communication Technology
  • Vol. 46, Issue 4, 68 (2022)
LIANG Yuxin, LI Zhihui, FAN Shijia, YANG Zhonghua..., LIU Dapeng, FENG Jing, LIAO Haijun and CUI Naidi|Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.13921/j.cnki.issn1002-5561.2022.04.012 Cite this Article
    LIANG Yuxin, LI Zhihui, FAN Shijia, YANG Zhonghua, LIU Dapeng, FENG Jing, LIAO Haijun, CUI Naidi. Design and fabrication of the SiN grating coupler with low loss[J]. Optical Communication Technology, 2022, 46(4): 68 Copy Citation Text show less
    References

    [1] SIEW S Y, LI B, GAO F, et al. Review of silicon photonics technology and platform development[J]. Journal of Lightwave Technology, 2021, 39(13): 4374-4389.

    [2] BAEHR J T, PINGUET T, GUO Q P L, et al. Myths and rumours of silicon photonics[J]. Nature Photonics, 2012, 6(4): 206-208.

    [3] JALALI B, FATHPOUR S. Silicon photonics[J]. Journal of Lightwave Technology, 2007, 24(12): 4600-4615.

    [4] SOREF R. The past, present, and future of silicon photonics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 12(6): 1678-1687.

    [5] MARCHETTI R, LACAVA C, CARROLL L, et al. Coupling strategies for silicon photonics integrated chips[J]. Photonics Research, 2019, 7(2): 201-239.

    [6] LARREA R, GUTIERREZ A M, GRIOL A, et al. Fiber-to-chip spot-size converter for coupling to silicon waveguides in the O-band[J]. IEEE Photonics Technology Letters, 2018, 31(1): 31-34.

    [7] WANG X, QUAN X, LIU M, et al. Silicon-nitride-assisted edge coupler interfacing with high numerical aperture fiber[J]. IEEE Photonics Technology Letters, 2019, 31(5): 349-352.

    [8] MAEGAMI Y, TAKEI R, OMODA E, et al. Spot-size converter with a SiO2 spacer layer between tapered Si and SiON waveguides for fiber-to-chip coupling[J]. Optics Express, 2015, 23(16): 21287-21295.

    [9] MAEGAMI Y, OKANO M, CONG G, et al. A simple and fully CMOS-

    [10] MAK J C C, QUENTIN W, OLIVIER S, et al. Silicon nitride-on-silicon bi-layer grating couplers designed by a global optimization method[J]. Optics Express, 2018, 26(10): 13656-13665.

    [11] WATANABE T, AYATA M, KOCH U, et al. Perpendicular grating coupler based on a blazed anti-back-reflection structure[J]. Journal of Light-

    [13] WANG W, WANG L, ZHANG W. Advances in soliton microcomb generation[J]. Advanced Photonics, 2020, 2(3): 034001-1-034001-27

    [14] LAMB E S, CARLSON D R, HICKSTEIN D D, et al. Optical-frequency measurements with a Kerr-microcomb and photonic-chip supercontinuum[J]. Physical Review Applied, 2018, 9(2): 024030-1-024030-5.

    [15] PFEIFFER M, KORDTS A, BRASCH V, et al. Photonic damascene process for integrated high-Q microresonator based on nonlinear photonics[J]. Optical, 2015, 3(1): 20-25.

    [16] BLUMENTHAL D J. Ultra-low loss SiN waveguide platform for inte-

    [17] NISHIMURA M, TAKEMURA H, UMEZAWA T, et al. Fabrication of sputtered low-strain, low-loss SiN waveguide for optical phased array device[C]//IEEE. Procedings of Opto-Electronics and Communications Confer-

    [18] ZHAO X, LI D, CHENG Z, et al. Compact grating coupler for 700 nm silicon nitride strip waveguides[J]. Journal of Lightwave Technology, 2015, 34(4): 1322-1327.

    [19] CHMIELAK B, SUCKOW S, PARRA J, et al. High-efficiency grating coupler for an ultralow-loss Si3N4-based platform[J]. Opt. Lett., 2022, 47: 2498-2501.

    [20] NAMBIAR S, KUMAR A, KALLEGA R, et al. High-efficiency grating coupler in 400 nm and 500 nm PECVD silicon nitride with bottom reflector[J]. IEEE Photonics Journal, 2019, 11(5): 1-3.

    LIANG Yuxin, LI Zhihui, FAN Shijia, YANG Zhonghua, LIU Dapeng, FENG Jing, LIAO Haijun, CUI Naidi. Design and fabrication of the SiN grating coupler with low loss[J]. Optical Communication Technology, 2022, 46(4): 68
    Download Citation