• Nano-Micro Letters
  • Vol. 16, Issue 1, 226 (2024)
Rongrong Li1,2,†, Tianfeng Yang2,†, Xiuhong Peng2,†, Qian Feng1..., Yali Hou1,3, Jiao Zhu4, Dake Chu4, Xianglong Duan3,*, Yanming Zhang2,** and Mingming Zhang1,***|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
  • 2School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, People’s Republic of China
  • 3Department of Rehabilitation Medicine, Shaanxi Provincial People’s Hospital, Xi’an, 710068 Shaanxi, People’s Republic of China
  • 4Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01438-w Cite this Article
    Rongrong Li, Tianfeng Yang, Xiuhong Peng, Qian Feng, Yali Hou, Jiao Zhu, Dake Chu, Xianglong Duan, Yanming Zhang, Mingming Zhang. Enhancing the Photosensitivity of Hypocrellin A by Perylene Diimide Metallacage-Based Host–Guest Complexation for Photodynamic Therapy[J]. Nano-Micro Letters, 2024, 16(1): 226 Copy Citation Text show less
    References

    [1] B.A. Chabner, T.G.J. Roberts, Timeline: chemotherapy and the war on cancer. Nat. Rev. Cancer 5, 65–72 (2005).

    [2] W. Mu, Q. Chu, Y. Liu, N. Zhang, A review on nano-based drug delivery system for cancer chemoimmunotherapy. Nano-Micro Lett. 12, 142 (2020).

    [3] X. Zhao, R. Zheng, B. Zhang, Y. Zhao, W. Xue et al., Sulfonated perylene as three-in-one STING agonist for cancer chemo-immunotherapy. Angew. Chem. Int. Ed. 63, e202318799 (2024).

    [4] K.M. Mahoney, P.D. Rennert, G.J. Freeman, Combination cancer immunotherapy and new immunomodulatory targets. Nat. Rev. Drug Discov. 14, 561–584 (2015).

    [5] W. Fan, B. Yung, P. Huang, X. Chen, Nanotechnology for multimodal synergistic cancer therapy. Chem. Rev. 117, 13566–13638 (2017).

    [6] J. Nam, S. Son, K.S. Park, W. Zou, L.D. Shea et al., Cancer nanomedicine for combination cancer immunotherapy. Nat. Rev. Mater. 4, 398–414 (2019).

    [7] S. Zhang, L. Jin, J. Liu, Y. Liu, T. Zhang et al., Boosting chemodynamic therapy by the synergistic effect of co-catalyze and photothermal effect triggered by the second near-infrared light. Nano-Micro Lett. 12, 180 (2020).

    [8] S.B. Brown, E.A. Brown, I. Walker, The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol. 5, 497–508 (2004).

    [9] A.P. Castano, P. Mroz, M.R. Hamblin, Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 6, 535–545 (2006).

    [10] X. Li, S. Lee, J. Yoon, Supramolecular photosensitizers rejuvenate photodynamic therapy. Chem. Soc. Rev. 47, 1174–1188 (2018).

    [11] X. Li, Y. Liu, F. Fu, M. Cheng, Y. Liu et al., Single NIR laser-activated multifunctional nanoparticles for cascaded photothermal and oxygen-independent photodynamic therapy. Nano-Micro Lett. 11, 68 (2019).

    [12] N. Yang, W. Xiao, X. Song, W. Wang, X. Dong, Recent advances in tumor microenvironment hydrogen peroxide-responsive materials for cancer photodynamic therapy. Nano-Micro Lett. 12, 15 (2020).

    [13] Y. Cai, D. Ni, W. Cheng, C. Ji, Y. Wang et al., Enzyme-triggered disassembly of perylene monoimide-based nanoclusters for activatable and deep photodynamic therapy. Angew. Chem. Int. Ed. 59, 14014–14018 (2020).

    [14] M. Ethirajan, Y. Chen, P. Joshi, R.K. Pandey, The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev. 40, 340–362 (2011).

    [15] X. Zheng, J. Ge, J. Wu, W. Liu, L. Guo et al., Biodegradable hypocrellin derivative nanovesicle as a near-infrared light-driven theranostic for dually photoactive cancer imaging and therapy. Biomaterials 185, 133–141 (2018).

    [16] Z. Wang, Q. Sun, B. Liu, Y. Kuang, A. Gulzar et al., Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy. Coord. Chem. Rev. 439, 213945 (2021).

    [17] W. Shao, C. Yang, F. Li, J. Wu, N. Wang et al., Molecular design of conjugated small molecule nanoparticles for synergistically enhanced PTT/PDT. Nano-Micro Lett. 12, 147 (2020).

    [18] L. Tu, C. Li, X. Xiong, J. Hyeon Kim, Q. Li et al., Engineered metallacycle-based supramolecular photosensitizers for effective photodynamic therapy. Angew. Chem. Int. Ed. 62, 2301560 (2023).

    [19] J. Zhou, G. Yu, F. Huang, Supramolecular chemotherapy based on host-guest molecular recognition: a novel strategy in the battle against cancer with a bright future. Chem. Soc. Rev. 46, 7021–7053 (2017).

    [20] H. Zhu, H. Wang, B. Shi, L. Shangguan, W. Tong et al., Supramolecular peptide constructed by molecular Lego allowing programmable self-assembly for photodynamic therapy. Nat. Commun. 10, 2412 (2019).

    [21] Y. Inokuma, M. Kawano, M. Fujita, Crystalline molecular flasks. Nat. Chem. 3, 349–358 (2011).

    [22] C.J. Brown, F.D. Toste, R.G. Bergman, K.N. Raymond, Supramolecular catalysis in metal–ligand cluster hosts. Chem. Rev. 115, 3012–3035 (2015).

    [23] T.R. Cook, P.J. Stang, Recent developments in the preparation and chemistry of metallacycles and metallacages via coordination. Chem. Rev. 115, 7001–7045 (2015).

    [24] G.H. Clever, P. Punt, Cation-anion arrangement patterns in self-assembled Pd2L4 and Pd4L8 coordination cages. Acc. Chem. Res. 50, 2233–2243 (2017).

    [25] S. Chakraborty, G.R. Newkome, Terpyridine-based metallosupramolecular constructs: tailored monomers to precise 2D-motifs and 3D-metallocages. Chem. Soc. Rev. 47, 3991–4016 (2018).

    [26] F.J. Rizzuto, L.K.S. von Krbek, J.R. Nitschke, Strategies for binding multiple guests in metal–organic cages. Nat. Rev. Chem. 3, 204–222 (2019).

    [27] M. Yoshizawa, L. Catti, Bent anthracene dimers as versatile building blocks for supramolecular capsules. Acc. Chem. Res. 52, 2392–2404 (2019).

    [28] M. Pan, K. Wu, J.-H. Zhang, C.-Y. Su, Chiral metal–organic cages/containers (MOCs): from structural and stereochemical design to applications. Coord. Chem. Rev. 378, 333–349 (2019).

    [29] H.-Y. Lin, Y.-T. Wang, X. Shi, H.-B. Yang, L. Xu, Switchable metallacycles and metallacages. Chem. Soc. Rev. 52, 1129–1154 (2023).

    [30] L.-J. Chen, G.-Z. Zhao, B. Jiang, B. Sun, M. Wang et al., Smart stimuli-responsive spherical nanostructures constructed from supramolecular metallodendrimers via hierarchical self-assembly. J. Am. Chem. Soc. 136, 5993–6001 (2014).

    [31] C.-L. Liu, R.-L. Zhang, C.-S. Lin, L.-P. Zhou, L.-X. Cai et al., Intraligand charge transfer sensitization on self-assembled europium tetrahedral cage leads to dual-selective luminescent sensing toward anion and cation. J. Am. Chem. Soc. 139, 12474–12479 (2017).

    [32] P. Howlader, E. Zangrando, P.S. Mukherjee, Self-assembly of enantiopure Pd12 tetrahedral homochiral nanocages with tetrazole linkers and chiral recognition. J. Am. Chem. Soc. 142, 9070–9078 (2020).

    [33] K. Yang, B. Hua, S. Qi, B. Bai, C. Yu et al., Suprasomes based on host-guest molecular recognition: an excellent alternative to liposomes in cancer theranostics. Angew. Chem. Int. Ed. 61, e202213572 (2022).

    [34] G. Li, T.K. Ronson, R. Lavendomme, Z. Huang, C. Fuertes-Espinosa et al., Enantiopure FeII 4L4 cages bind steroids stereoselectively. Chem 9, 1549–1561 (2023).

    [35] J. Zhou, G. Yu, Q. Li, M. Wang, F. Huang, Separation of benzene and cyclohexane by nonporous adaptive crystals of a hybrid[3]arene. J. Am. Chem. Soc. 142, 2228–2232 (2020).

    [36] L. Ma, C.J.E. Haynes, A.B. Grommet, A. Walczak, C.C. Parkins et al., Coordination cages as permanently porous ionic liquids. Nat. Chem. 12, 270–275 (2020).

    [37] A.B. Sainaba, M. Venkateswarulu, P. Bhandari, K.S.A. Arachchige, J.K. Clegg et al., An adaptable water-soluble molecular boat for selective separation of phenanthrene from isomeric anthracene. J. Am. Chem. Soc. 144, 7504–7513 (2022).

    [38] S.-C. Li, L.-X. Cai, M. Hong, Q. Chen, Q.-F. Sun, Combinatorial self-assembly of coordination cages with systematically fine-tuned cavities for efficient co-encapsulation and catalysis. Angew. Chem. Int. Ed. 61, e202204732 (2022).

    [39] J. Yang, S.-J. Hu, L.-X. Cai, L.-P. Zhou, Q.-F. Sun, Counteranion-mediated efficient iodine capture in a hexacationic imidazolium organic cage enabled by multiple non-covalent interactions. Nat. Commun. 14, 6082 (2023).

    [40] C.F. Espinosa, T.K. Ronson, J.R. Nitschke, Secondary bracing ligands drive heteroleptic cuboctahedral PdII12 cage formation. J. Am. Chem. Soc. 145, 9965–9969 (2023).

    [41] R. Zhang, D. Hu, Y. Fu, Q. Feng, C. Mu et al., Triazine-based multicomponent metallacages with tunable structures for SO2 selective capture and conversion. Aggregate (2023).

    [42] L.-X. Cai, S.-C. Li, D.-N. Yan, L.-P. Zhou, F. Guo et al., Water-soluble redox-active cage hosting polyoxometalates for selective desulfurization catalysis. J. Am. Chem. Soc. 140, 4869–4876 (2018).

    [43] Z. Zhang, L. Ma, F. Fang, Y. Hou, C. Lu et al., Porphyrin-based multicomponent metallacage: host-guest complexation toward photooxidation-triggered reversible encapsulation and release. JACS Au 2, 1479–1487 (2022).

    [44] R. Saha, B. Mondal, P.S. Mukherjee, Molecular cavity for catalysis and formation of metal nanoparticles for use in catalysis. Chem. Rev. 122, 12244–12307 (2022).

    [45] D.-N. Yan, L.-X. Cai, S.-J. Hu, Y.-F. Zhou, L.-P. Zhou et al., An organo-palladium host built from a dynamic macrocyclic ligand: adaptive self-assembly, induced-fit guest binding, and catalysis. Angew. Chem. Int. Ed. 61, e202209879 (2022).

    [46] C. Mu, L. Zhang, G. Li, Y. Hou, H. Liu et al., Isoreticular preparation of tetraphenylethylene-based multicomponent metallacages towards light-driven hydrogen production. Angew. Chem. Int. Ed. 62, e202311137 (2023).

    [47] T.R. Cook, V. Vajpayee, M.H. Lee, P.J. Stang, K.W. Chi, Biomedical and biochemical applications of self-assembled metallacycles and metallacages. Acc. Chem. Res. 46, 2464–2474 (2013).

    [48] H. Sepehrpour, W. Fu, Y. Sun, P.J. Stang, Biomedically relevant self-assembled metallacycles and metallacages. J. Am. Chem. Soc. 141, 14005–14020 (2019).

    [49] Q. Feng, R. Li, T. Gao, D. Chu, M. Zhang, Emissive metallacages for biomedical applications. Sci. China Chem. 66, 2447–2459 (2023).

    [50] Y. Xu, W. Tuo, L. Yang, Y. Sun, C. Li et al., Design of a metallacycle-based supramolecular photosensitizer for in vivo image-guided photodynamic inactivation of bacteria. Angew. Chem. Int. Ed. 61, e202110048 (2022).

    [51] F. Schmitt, J. Freudenreich, N.P.E. Barry, L. Juillerat-Jeanneret, G. Süss-Fink et al., Organometallic cages as vehicles for intracellular release of photosensitizers. J. Am. Chem. Soc. 134, 754–757 (2012).

    [52] V. Abdul Rinshad, J. Sahoo, M. Venkateswarulu, N. Hickey, M. De et al., Solvent induced conversion of a self-assembled gyrobifastigium to a barrel and encapsulation of zinc-phthalocyanine within the barrel for enhanced photodynamic therapy. Angew. Chem. Int. Ed. 62, e202218226 (2023).

    [53] G. Yu, S. Yu, M.L. Saha, J. Zhou, T.R. Cook et al., A discrete organoplatinum(II) metallacage as a multimodality theranostic platform for cancer photochemotherapy. Nat. Commun. 9, 4335 (2018).

    [54] C. Li, Y. Pang, Y. Xu, M. Lu, L. Tu et al., Near-infrared metal agents assisting precision medicine: from strategic design to bioimaging and therapeutic applications. Chem. Soc. Rev. 52, 4392–4442 (2023).

    [55] C.-B. Huang, L. Xu, J.-L. Zhu, Y.-X. Wang, B. Sun et al., Real-time monitoring the dynamics of coordination-driven self-assembly by fluorescence-resonance energy transfer. J. Am. Chem. Soc. 139, 9459–9462 (2017).

    [56] A.J.P. Teunissen, C. Pérez-Medina, A. Meijerink, W.J.M. Mulder, Investigating supramolecular systems using Förster resonance energy transfer. Chem. Soc. Rev. 47, 7027–7044 (2018).

    [57] L. Wu, C. Huang, B.P. Emery, A.C. Sedgwick, S.D. Bull et al., Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chem. Soc. Rev. 49, 5110–5139 (2020).

    [58] Y. Hou, Z. Zhang, S. Lu, J. Yuan, Q. Zhu et al., Highly emissive perylene diimide-based metallacages and their host–guest chemistry for information encryption. J. Am. Chem. Soc. 142, 18763–18768 (2020).

    [59] C. Mu, Z. Zhang, Y. Hou, H. Liu, L. Ma et al., Tetraphenylethylene-based multicomponent emissive metallacages as solid-state fluorescent materials. Angew. Chem. Int. Ed. 60, 12293–12297 (2021).

    [60] H. Liu, Z. Zhang, C. Mu, L. Ma, H. Yuan et al., Hexaphenylbenzene-based deep blue-emissive metallacages as donors for light-harvesting systems. Angew. Chem. Int. Ed. 61, e202207289 (2022).

    [61] Z. Zhang, Z. Zhao, L. Wu, S. Lu, S. Ling et al., Emissive platinum(II) cages with reverse fluorescence resonance energy transfer for multiple sensing. J. Am. Chem. Soc. 142, 2592–2600 (2020).

    [62] H. Liu, C. Guo, Z. Zhang, C. Mu, Q. Feng et al., Hexaphenyltriphenylene-based multicomponent metallacages: host-guest complexation for white-light emission. Chemistry 29, e202203926 (2023).

    [63] F. Biedermann, H.-J. Schneider, Experimental binding energies in supramolecular complexes. Chem. Rev. 116, 5216–5300 (2016).

    [64] S. Sarkar, P. Ballester, M. Spektor, E.A. Kataev, Micromolar affinity and higher: synthetic host-guest complexes with high stabilities. Angew. Chem. Int. Ed. 62, e202214705 (2023).

    [65] Z. Xu, S. Peng, Y.-Y. Wang, J.-K. Zhang, A.I. Lazar et al., Broad-spectrum tunable photoluminescent nanomaterials constructed from a modular light-harvesting platform based on macrocyclic amphiphiles. Adv. Mater. 28, 7666–7671 (2016).

    [66] T. Mirkovic, E.E. Ostroumov, J.M. Anna, R. van Grondelle, Govindjee et al., Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem. Rev. 117, 249–293 (2017).

    [67] J. Zou, L. Li, J. Zhu, X. Li, Z. Yang et al., Singlet oxygen “afterglow” therapy with NIR-II fluorescent molecules. Adv. Mater. 33, 2103627 (2021).

    [68] F. Andrade, D. Rafael, M. Videira, D. Ferreira, A. Sosnik et al., Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases. Adv. Drug Deliv. Rev. 65, 1816–1827 (2013).

    [69] A. Gabizon, M. Bradbury, U. Prabhakar, W. Zamboni, S. Libutti et al., Cancer nanomedicines: closing the translational gap. Lancet 384, 2175–2176 (2015).

    [70] A. Nel, E. Ruoslahti, H. Meng, New insights into “permeability” as in the enhanced permeability and retention effect of cancer nanotherapeutics. ACS Nano 11, 9567–9569 (2017).

    [71] F. Würthner, C.R. Saha-Möller, B. Fimmel, S. Ogi, P. Leowanawat et al., Perylene bisimide dye assemblies as archetype functional supramolecular materials. Chem. Rev. 116, 962–1052 (2016).

    [72] S. Yan, P. Sun, N. Niu, Z. Zhang, W. Xu et al., “One stone, four birds” ion engineering to fabricate versatile core–shell organosilica nanoparticles for intelligent nanotheranostics. ACS Nano 16, 9785–9798 (2022).

    Rongrong Li, Tianfeng Yang, Xiuhong Peng, Qian Feng, Yali Hou, Jiao Zhu, Dake Chu, Xianglong Duan, Yanming Zhang, Mingming Zhang. Enhancing the Photosensitivity of Hypocrellin A by Perylene Diimide Metallacage-Based Host–Guest Complexation for Photodynamic Therapy[J]. Nano-Micro Letters, 2024, 16(1): 226
    Download Citation