• Chinese Journal of Lasers
  • Vol. 49, Issue 14, 1402805 (2022)
Fan Wu1, Guilin Wan2, Yang Yang1, Jiaqiang Huang2, Wei Chen1、*, and Zhonggang Sun2、**
Author Affiliations
  • 1AVIC Manufacturing Technology Institute, Beijing 100024, China
  • 2College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
  • show less
    DOI: 10.3788/CJL202249.1402805 Cite this Article Set citation alerts
    Fan Wu, Guilin Wan, Yang Yang, Jiaqiang Huang, Wei Chen, Zhonggang Sun. Effect of Stirring on Microstructure and Properties of As-Deposited 2024 Aluminum Alloy[J]. Chinese Journal of Lasers, 2022, 49(14): 1402805 Copy Citation Text show less
    References

    [1] Dong P, Li Z H, Yan Z Y et al. Research status of selective laser melting of aluminum alloys[J]. Applied Laser, 35, 607-611(2015).

    [2] He R J, Wang H M. Microstructure features of laser deposited Ti-6Al-2Zr-Mo-V alloy[J]. Journal of Aeronautical Materials, 29, 18-22(2009).

    [3] Dai X Q, Shi Q J, Zhao Y et al. Microstructure and performance of NiTi-based intermetallic compound coatings by laser melting deposition[J]. Chinese Journal of Lasers, 45, 0702008(2018).

    [4] Bartkowiak K, Ullrich S, Frick T et al. New developments of laser processing aluminium alloys via additive manufacturing technique[J]. Physics Procedia, 12, 393-401(2011).

    [5] Ji X, Sun Z G, Chang L L et al. Microstructure evolution behavior in laser melting deposition of Ti6Al4V/Inconel625 gradient high-temperature resistant coating[J]. Chinese Journal of Lasers, 46, 1102008(2019).

    [6] Fan L, Chen H Y, Dong Y H et al. Corrosion behavior of Fe-based laser cladding coating in hydrochloric acid solutions[J]. Acta Metallurgica Sinica, 54, 1019-1030(2018).

    [7] Dai S L, Zhang K, Yang S J[M]. Advanced areanautical aluminum alloy materials technology and application(2012).

    [8] Wei J J, Mi G F, Xu L et al. Research progress on laser additive manufacturing of aluminum alloy and its composite[J]. Hot Working Technology, 48, 27-31(2019).

    [9] Zhang H, Nie X J, Zhu H H et al. Study on high strength Al-Cu-Mg alloy fabricated by selective laser melting[J]. Chinese Journal of Lasers, 43, 0503007(2016).

    [10] Li J S, Qi W J, Li Y J et al. Influence of process parameters of forming characteristics on Ti-6Al-4V fabricated by selective laser melting[J]. Materials Review, 31(2017).

    [11] Gu T[D]. Microstructure and properties of high strength aluminum alloy Al2024 laser additive manufacturing(2019).

    [12] Yadav V K, Gaur V, Singh I V. Effect of post-weld heat treatment on mechanical properties and fatigue crack growth rate in welded AA-2024[J]. Materials Science and Engineering: A, 779, 139116(2020).

    [13] Roodgari M R, Jamaati R, Aval H J. Fabrication of a 2-layer laminated steel composite by friction stir additive manufacturing[J]. Journal of Manufacturing Processes, 51, 110-121(2020).

    [14] Perry M E J, Griffiths R J, Garcia D et al. Morphological and microstructural investigation of the non-planar interface formed in solid-state metal additive manufacturing by additive friction stir deposition[J]. Additive Manufacturing, 35, 101293(2020).

    [15] Fu X R, Xing L, Huang C P et al. Microstructure of 2024 aluminum alloy by stationary shoulder friction stir additive manufacturing[J]. The Chinese Journal of Nonferrous Metals, 29, 1591-1598(2019).

    [16] Wang X K, Xing L, Xu W P et al. Influence of process parameters on formation of friction stir additive manufacturing on aluminum alloy[J]. Journal of Materials Engineering, 43, 8-12(2015).

    [17] Huang B[D]. Study on additive manufacturing technology based on the principle of stationary shoulder friction stir welding(2016).

    [18] Griffiths R J, Garcia D, Song J et al. Solid-state additive manufacturing of aluminum and copper using additive friction stir deposition: process-microstructure linkages[J]. Materialia, 15, 100967(2021).

    [19] Ardalanniya A, Nourouzi S, Jamshidi Aval H. Effects of multipass additive friction stir processing on microstructure and mechanical properties of Al-Zn-Cup/Al-Zn laminated composites[J]. JOM, 73, 2844-2858(2021).

    [20] Sun J R, Zhu H, Zhao H X et al. Influence of process parameters of friction stir additive manufacturing of aluminum alloy on forming effect[J]. Hot Working Technology, 47, 37-42(2018).

    [21] Zhang Z Q, He C S, Zhao S et al. Microstructure and mechanical properties of the stirred zone of ultrasonic assisted friction stir welded joint of 7075-T6 alloy[J]. Journal of Northeastern University (Natural Science), 41, 1708-1714(2020).

    [22] Baradarani F, Mostafapour A, Shalvandi M. Effect of ultrasonic assisted friction stir welding on microstructure and mechanical properties of AZ91-C magnesium alloy[J]. Transactions of Nonferrous Metals Society of China, 29, 2514-2522(2019).

    [23] Coşkun A, Gündüz S. An investigation on cold, warm and hot deformation behaviour of Al2024 alloy under as-received, solution heat treated, peak aged and over aged conditions[J]. Canadian Metallurgical Quarterly, 59, 297-305(2020).

    [24] Sun W H, Fan Y Q, Zhang G T et al. Comparison of structure and performance of laser welded joints of SiCp/Al composite materials[J]. Chinese Journal of Lasers, 48, 1002105(2021).

    [25] Jia Y, Wang K H, Yang L et al. Analysis on microstructure of 6061 Al alloy with friction stir welding[J]. Hot Working Technology, 44, 180-182(2015).

    [26] Wu Y J, Zhou Z M. Analysis of microstructure and properties in friction-stir welding of 3A21 aluminum alloy plate[J]. Light Alloy Fabrication Technology, 47, 48-52(2019).

    [27] Huang J X, Sun Z G, Chang H et al. Compositional changes and microstructure evolution of Ti6Al4V-Inconel718 functionally graded materials by laser additive manufacturing[J]. Rare Metal Materials and Engineering, 49, 2813-2819(2020).

    [28] Prillhofer R, Rank G, Berneder J et al. Property criteria for automotive Al-Mg-Si sheet alloys[J]. Materials, 7, 5047-5068(2014).

    [29] Zhang X, Su R. High temperature tensile properties of 2024 aluminum alloy[J]. Heat Treatment of Metals, 44, 156-160(2019).

    [30] Tian X L, Zhou J Z, Li J et al. Effect of cryogenic laser peening on microstructure of 2024-T351 aluminum alloy[J]. Chinese Journal of Lasers, 46, 0902004(2019).

    [31] Gu D D, Zhang H M, Chen H Y et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 47, 0500002(2020).

    Fan Wu, Guilin Wan, Yang Yang, Jiaqiang Huang, Wei Chen, Zhonggang Sun. Effect of Stirring on Microstructure and Properties of As-Deposited 2024 Aluminum Alloy[J]. Chinese Journal of Lasers, 2022, 49(14): 1402805
    Download Citation