• Photonics Research
  • Vol. 8, Issue 1, 70 (2020)
Jian Yang1, Jiyi Hu2, Hongyu Luo1, Jianfeng Li1、*, Jishu Liu2, Xiaohui Li2、3, and Yong Liu1
Author Affiliations
  • 1State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
  • 2School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
  • 3e-mail: lixiaohui0523@163.com
  • show less
    DOI: 10.1364/PRJ.8.000070 Cite this Article Set citation alerts
    Jian Yang, Jiyi Hu, Hongyu Luo, Jianfeng Li, Jishu Liu, Xiaohui Li, Yong Liu. Fe3O4 nanoparticles as a saturable absorber for a tunable Q-switched dysprosium laser around 3 μm[J]. Photonics Research, 2020, 8(1): 70 Copy Citation Text show less
    References

    [1] P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, C. Ziener. Remote sensing of the atmosphere using ultrashort laser pulses. Appl. Phys. B, 71, 573-580(2000).

    [2] A. Kilpela, J. Ylitalo, K. Maatta, J. Kostamovaara. Timing discriminator for pulsed time-of-flight laser rangefinding measurements. Rev. Sci. Instrum., 69, 1978-1984(1998).

    [3] M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. R. Garcia-Talavera, A. Alonso, Z. Sodnik, B. Demelenne. Long-term statistics of laser beam propagation in an optical ground-to-geostationary satellite communications link. IEEE Trans. Antennas Propag., 53, 842-850(2005).

    [4] S. D. Jackson. Towards high-power mid-infrared emission from a fiber laser. Nat. Photonics, 6, 423-431(2012).

    [5] U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, J. A. der Au. Semiconductor saturable absorber mirrors (SESAM’S) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Sel. Top. Quantum, 2, 435-453(1996).

    [6] O. G. Okhotnikov, L. Gomes, N. Xiang, T. Jouhti, A. B. Grudinin. Mode-locked ytterbium fiber laser tunable in the 980–1070-nm spectral range. Opt. Lett., 28, 1522-1524(2003).

    [7] R. Paschotta, R. Häring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, D. J. Richardson. Passively Q-switched 0.1-mJ fiber laser system at 1.53  μm. Opt. Lett., 24, 388-390(1999).

    [8] J. F. Li, D. D. Hudson, Y. Liu, S. D. Jackson. Efficient 2.87  μm fiber laser passively switched using a semiconductor saturable absorber mirror. Opt. Lett., 37, 3747-3749(2012).

    [9] J. F. Li, H. Y. Luo, Y. L. He, Y. Liu, L. Zhang, K. M. Zhou, A. G. Rozhin, S. K. Turistyn. Semiconductor saturable absorber mirror passively Q-switched 2.97  μm fluoride fiber laser. Laser Phys. Lett., 11, 065102(2014).

    [10] X. F. Liu, Q. B. Guo, J. R. Qiu. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics. Adv. Mater., 29, 1605886(2017).

    [11] X. Jiang, S. Gross, M. J. Withford, H. Zhang, D. Yeom, F. Rotermund, A. Fuerbach. Low-dimensional nanomaterial saturable absorbers for ultrashort-pulsed waveguide lasers. Opt. Mater. Express, 8, 3055-3071(2018).

    [12] S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, Y. Sakakibara, A. Rozhin, M. Tokumoto, H. Kataura, Y. Achiba, K. Kikuchi. Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes. Optical Fiber Communications Conference (OFC), PD44(2003).

    [13] F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, A. C. Ferrari. Wideband-tuneable, nanotube mode-locked, fibre laser. Nat. Nanotechnol., 3, 738-742(2008).

    [14] S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, O. G. Okhotnikov. Carbon nanotube films for ultrafast broadband technology. Opt. Express, 17, 2358-2363(2009).

    [15] C. Wei, Y. J. Lyu, H. X. Shi, Z. Kang, H. Zhang, G. S. Qin, Y. Liu. Mid-Infrared Q-switched and mode-locked fiber lasers at 2.87  μm based on carbon nanotube. IEEE J. Sel. Top. Quantum, 25, 1100206(2019).

    [16] Z. Kang, Y. Xu, L. Zhang, Z. X. Jia, L. Liu, D. Zhao, Y. Feng, G. S. Qin, W. P. Qin. Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers. Appl. Phys. Lett., 103, 041105(2013).

    [17] J. Lee, J. Koo, J. Lee, J. H. Lee. End-to-end self-assembly of gold nanorods in water solution for absorption enhancement at a 1-to-2  μm band for a broadband saturable absorber. J. Lightwave Technol., 34, 5250-5257(2016).

    [18] H. Luo, Z. Kang, Y. Gao, H. Peng, J. Li, G. Qin, Y. Liu. Large aspect ratio gold nanorods (LAR-GNRs) for mid-infrared pulse generation with a tunable wavelength near 3  μm. Opt. Express, 27, 4886-4896(2019).

    [19] A. K. Geim, K. S. Novoselov. The rise of graphene. Nat. Mater., 6, 183-191(2007).

    [20] M. S. Xu, T. Liang, M. M. Shi, H. Z. Chen. Graphene-like two-dimensional materials. Chem. Rev., 113, 3766-3798(2013).

    [21] F. N. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramsubramaniam. Two-dimensional material nanophotonics. Nat. Photonics, 8, 899-907(2014).

    [22] Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, D. Y. Tang. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater., 19, 3077-3083(2009).

    [23] C. J. Zhao, Y. H. Zou, Y. Chen, Z. T. Wang, S. B. Lu, H. Zhang, S. C. Wen, B. Y. Tang. Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi2Se3 as a mode locker. Opt. Express, 20, 27888-27895(2012).

    [24] H. Yu, H. Zhang, Y. C. Wang, C. J. Zhao, B. L. Wang, S. C. Wen, H. J. Zhang, J. Y. Wang. Topological insulator as an optical modulator for pulsed solid-state lasers. Laser Photon. Rev., 7, L77-L83(2013).

    [25] J. F. Li, H. Y. Luo, L. L. Wang, C. J. Zhao, H. Zhang, H. P. Li, Y. Liu. 3-μm mid-infrared pulse generation using topological insulator as the saturable absorber. Opt. Lett., 40, 3659-3662(2015).

    [26] Y. Chen, G. B. Jiang, S. Q. Chen, Z. N. Guo, X. F. Yu, C. J. Zhao, H. Zhang, Q. L. Bao, S. C. Wen, D. Y. Tang, D. Y. Fan. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation. Opt. Express, 23, 12823-12833(2015).

    [27] J. Li, H. Luo, B. Zhai, R. Lu, Z. Guo, H. Zhang, Y. Liu. Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers. Sci. Rep., 6, 30361(2016).

    [28] Z. P. Qin, T. Hai, G. Q. Xie, J. G. Ma, P. Yuan, L. J. Qian, L. Li, L. M. Zhao, D. Y. Shen. Black phosphorus Q-switched and mode-locked mid-infrared Er: ZBLAN fiber laser at 3.5  μm wavelength. Opt. Express, 26, 8224-8231(2018).

    [29] B. H. Chen, X. Y. Zhang, K. Wu, H. Wang, J. Wang, J. P. Chen. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Opt. Express, 23, 26723-26737(2015).

    [30] R. Woodward, E. Kelleher. 2D saturable absorbers for fibre lasers. Appl. Sci., 5, 1440-1456(2015).

    [31] C. Wei, H. Luo, H. Zhang, C. Li, J. Xie, J. Li, Y. Liu. Passively Q-switched mid-infrared fluoride fiber laser around 3  μm using a tungsten disulfide (WS2) saturable absorber. Laser Phys. Lett., 13, 105108(2016).

    [32] C. Wei, X. S. Zhu, F. Wang, Y. Xu, K. Balakrishnan, F. Song, R. A. Norwood, N. Peyghambarian. Graphene Q-switched 2.78  μm Er3+-doped fluoride fiber laser. Opt. Lett., 38, 3233-3236(2013).

    [33] S. K. M. Al-Hayali, D. Z. Mohammed, W. A. Khaleel, A. H. Al-Janabi. Aluminum oxide nanoparticles as saturable absorber for C-band passively Q-switched fiber laser. Appl. Opt., 56, 4720-4726(2017).

    [34] H. Ahmad, S. N. Aidit, N. Yusoff. Bismuth oxide nanoflakes for passive Q-switching in a C-band erbium doped fiber laser. Infrared Phys. Technol., 95, 19-26(2018).

    [35] A. Nady, M. H. M. Ahmed, A. A. Latiff, A. Numan, C. H. R. Ooi, S. W. Harun. Nickel oxide nanoparticles as a saturable absorber for an all-fiber passively Q-switched erbium-doped fiber laser. Laser Phys., 27, 065105(2017).

    [36] H. Ahmad, M. A. M. Salim, Z. A. Ali, M. F. Ismail, K. Thambiratnam, A. A. Latif, N. Nayan, S. W. Harun. Titanium dioxide-based Q-switched dual wavelength in the 1 micron region. Chin. Opt. Lett., 14, 091403(2016).

    [37] H. Ahmad, C. S. J. Lee, M. A. Ismail, Z. A. Ali, S. A. Reduan, N. E. Ruslan, S. W. Harun. Tunable Q-switched fiber laser using zinc oxide nanoparticles as a saturable absorber. Appl. Opt., 55, 4277-4281(2016).

    [38] X. K. Bai, C. B. Mou, L. X. Xu, S. F. Wang, S. L. Pu, X. L. Zeng. Passively Q-switched erbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber. Appl. Phys. Express, 9, 042701(2016).

    [39] T. Hashimoto, T. Yamada, T. Yoko. Third-order nonlinear optical properties of sol-gel derived α-Fe2O3, γ- Fe2O3, and Fe3O4 thin films. J. Appl. Phys., 80, 3184-3190(1996).

    [40] G. Xing, J. Jiang, J. Y. Ying, W. Ji. Fe3O4-Ag nanocomposites for optical limiting: broad temporal response and low threshold. Opt. Express, 18, 6183-6190(2010).

    [41] I. Balberg, J. I. Pankove. Optical measurements on magnetite single crystals. Phys. Rev. Lett., 27, 596-599(1971).

    [42] P. Tartaj, M. del Puerto Morales, S. Veintemillas-Verdaguer, T. Gonzalez- Carreno, C. J. Serna. The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D, 36, R182-R197(2003).

    [43] F. El-Diasty, H. M. El-Sayed, F. I. El-Hosiny, M. I. M. Ismail. Complex susceptibility analysis of magneto-fluids: optical band gap and surface studies on the nanomagnetite-based particles. Curr. Opin. Solid State Mater. Sci., 13, 28-34(2009).

    [44] X. Wang, Y. G. Wang, D. Mao, L. Li, Z. D. Chen. Passively Q-switched Nd:YVO4 laser based on Fe3O4 nanoparticles saturable absorber. Opt. Mater. Express, 7, 2913-2921(2017).

    [45] S. K. M. Al-Hayali, A. H. Al-Janabi. Dual-wavelength passively Q-switched ytterbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber and intracavity polarization. Laser Phys., 28, 035103(2018).

    [46] L. Li, R. D. Lv, S. C. Liu, Z. D. Chen, J. Wang, Y. G. Wang, W. Ren, W. J. Liu. Ferroferric-oxide nanoparticle based Q-switcher for a 1  μm region. Opt. Mater. Express, 9, 731-738(2019).

    [47] D. Mao, X. Q. Cui, W. D. Zhang, M. K. Li, T. X. Feng, B. B. Du, H. Lu, J. L. Zhao. Q-switched fiber laser based on saturable absorption of ferroferric-oxide nanoparticles. Photon. Res., 5, 52-56(2017).

    [48] Y. S. Chen, J. D. Yin, H. Chen, J. Z. Wang, P. G. Yan, S. C. Ruan. Single-wavelength and multiwavelength Q-switched fiber laser using Fe3O4 nanoparticles. IEEE Photon. J., 9, 1501009(2017).

    [49] L. Li, Y. G. Wang, X. Wang, R. D. Lv, S. C. Liu, Z. D. Chen, J. Wang. Generation of dark solitons in Er-doped fiber laser based on ferroferric-oxide nanoparticles. Opt. Laser Technol., 103, 354-358(2018).

    [50] N. Li, H. Jia, J. X. Liu, L. H. Cui, Z. X. Jia, Z. Kang, G. S. Qin, W. P. Qin. Fe3O4 nanoparticles as the saturable absorber for a mode-locked fiber laser at 1558 nm. Laser Phys. Lett., 16, 065102(2019).

    [51] H. S. Wang, F. Y. Zhao, Z. J. Yan, X. H. Hu, K. M. Zhou, T. Zhang, W. Zhang, Y. S. Wang, W. Zhao, L. Zhang, C. D. Sun. Excessively tilted fiber grating based Fe3O4 saturable absorber for passively mode-locked fiber laser. Opt. Express, 27, 15693-15700(2019).

    [52] J. H. Koo, J. S. Lee, J. H. Kim, J. H. Lee. A Q-switched 1.89  μm fiber laser using an Fe3O4-based saturable absorber. J. Lumin., 195, 181-186(2018).

    [53] X. Y. Liu, K. J. Yang, S. Z. Zhao, J. Zhao, T. Li, W. C. Qiao, G. Q. Li, D. C. Li, B. T. Zhang, J. L. He, J. T. Bian, L. H. Zheng, L. B. Su, J. Xu. Ferroferric-oxide nanoparticle based optical modulator for 2  μm spectral region. IEEE Photon. Technol. Lett., 30, 777-780(2018).

    [54] J. H. Koo, K. H. Jeong, B.-A. Yu, W. J. Shin. Evanescent field interaction with Fe3O4 nano-particle for passively Q-switched thulium-doped fiber laser at 1.94  μm. Opt. Laser Technol., 119, 105579(2019).

    [55] P. H. Tang, Y. Tao, Y. L. Mao, M. Wu, Z. Y. Huang, S. N. Liang, X. H. Chen, X. Qi, B. Huang, J. Liu, C. J. Zhao. Graphene/MoS2 heterostructure: a robust mid-infrared optical modulator for Er3+-doped ZBLAN fiber laser. Chin. Opt. Lett., 16, 020012(2018).

    [56] P. H. Tang, M. Wu, Q. K. Wang, L. L. Miao, B. Huang, J. Liu, C. J. Zhao, S. C. Wen. 2.8-μm pulsed Er3+:ZBLAN fiber laser modulated by topological insulator. IEEE Photon. Technol. Lett., 28, 1573-1576(2016).

    [57] Z. P. Qin, G. Q. Xie, H. Zhang, C. J. Zhao, P. Yuan, S. C. Wen, L. J. Qian. Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8  μm. Opt. Express, 23, 24713-24718(2015).

    [58] L. Gomes, A. F. H. Librantz, S. D. Jackson. Energy level decay and excited state absorption processes in dysprosium-doped fluoride glass. J. Appl. Phys., 107, 053103(2010).

    [59] M. R. Majewski, R. I. Woodward, S. D. Jackson. Dysprosium-doped ZBLAN fiber laser tunable from 2.8  μm to 3.4  μm, pumped at 1.7  μm. Opt. Lett., 43, 971-974(2018).

    [60] V. Fortin, F. Jobin, M. Larose, M. Bernier, R. Vallée. 10-W-level monolithic dysprosium-doped fiber laser at 3.24  μm. Opt. Lett., 44, 491-494(2019).

    [61] R. I. Woodward, M. R. Majewski, S. D. Jackson. Mode-locked dysprosium fiber laser: picosecond pulse generation from 2.97 to 3.30  μm. APL Photon., 3, 116106(2018).

    [62] Y. H. Wang, F. Jobin, S. Duval, V. Fortin, P. Laporta, M. Bernier, G. Galzerano, R. Vallée. Ultrafast Dy3+: fluoride fiber laser beyond 3  μm. Opt. Lett., 44, 395-398(2019).

    [63] H. Y. Luo, J. F. Li, Y. Gao, Y. Xu, X. H. Li, Y. Liu. Tunable passively Q-switched Dy3+-doped fiber laser from 2.71 to 3.08  μm using PbS nanoparticles. Opt. Lett., 44, 2322-2325(2019).

    [64] R. I. Woodward, M. R. Majewski, N. Macadam, G. Hu, T. Albrow-Owen, T. Hasan, S. D. Jackson. Q-switched Dy:ZBLAN fiber lasers beyond 3  μm: comparison of pulse generation using acousto-optic modulation and inkjet-printed black phosphorus. Opt. Express, 27, 15032-15045(2019).

    [65] C. Wei, X. S. Zhu, R. A. Norwood, N. Peyghambarian. Passively Q-switched 2.8-μm nanosecond fiber laser. IEEE Photon. Technol. Lett., 24, 1741-1744(2012).

    [66] T. Zhang, G. Y. Feng, H. Zhang, X. H. Yang, S. Y. Dai, S. H. Zhou. 2.78  μm passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film. Laser Phys. Lett., 13, 075102(2016).

    [67] Z. Luo, C. Liu, Y. Huang, D. Wu, J. Wu, H. Xu, Z. Cai, Z. Lin, L. Sun, J. Weng. Topological-insulator passively Q-switched double-clad fiber laser at 2  μm wavelength. IEEE J. Sel. Top. Quantum Electron, 20, 0902708(2014).

    [68] H. Yu, X. Zheng, K. Yin, X. Cheng, T. Jiang. Nanosecond passively Q-switched thulium/holmium-doped fiber laser based on black phosphorus nanoplatelets. Opt. Mater. Express, 6, 603-609(2016).

    [69] K. A. Khatri, V. Ross, J. M. Grevelink, C. M. Magro, R. R. Anderson. Comparison of erbium:YAG and carbon dioxide lasers in resurfacing of facial rhytides. Arch. Dermatol., 135, 391-397(1999).

    [70] S. Stübinger, J. P. Dissmann, N. C. Pinho, B. Saldamli, O. Seitz, R. Sader. A preliminary report about treatment of bisphosphonate related osteonecrosis of the jaw with Er:YAG laser ablation. Lasers Surg. Med., 41, 26-30(2009).

    [71] L. S. Bass. Erbium:YAG laser skin resurfacing: preliminary clinical evaluation. Ann. Plast. Surg., 40, 328-334(1998).

    [72] S. Karsai, A. Czarnecka, M. Jünger, C. Raulin. Ablative fractional lasers (CO2 and Er:YAG): a randomized controlled double-blind split-face trial of the treatment of peri-orbital rhytides. Lasers Surg. Med., 42, 160-167(2010).

    CLP Journals

    [1] Qiang Yu, Kun Guo, Jie Chen, Tao Wang, Jin Wang, Xin-Yao Shi, Jian Wu, Kai Zhang, Pu Zhou. Dual-wavelength self-starting mode-locking Er-doped fiber laser with MnPS3 saturable absorber [J]. Acta Physica Sinica, 2020, 69(18): 184208-1

    Jian Yang, Jiyi Hu, Hongyu Luo, Jianfeng Li, Jishu Liu, Xiaohui Li, Yong Liu. Fe3O4 nanoparticles as a saturable absorber for a tunable Q-switched dysprosium laser around 3 μm[J]. Photonics Research, 2020, 8(1): 70
    Download Citation