• Chinese Optics Letters
  • Vol. 22, Issue 4, 041403 (2024)
Tao Wang1, Shuai Ren1,2, Hongxiang Chang1, Bo Ren1..., Kun Guo1, Can Li1,*, Pengfei Ma1,3,4, Jinyong Leng1,3,4 and Pu Zhou1,**|Show fewer author(s)
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 2School of Information and Communications, National University of Defense Technology, Wuhan 430035, China
  • 3Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
  • 4Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.3788/COL202422.041403 Cite this Article Set citation alerts
    Tao Wang, Shuai Ren, Hongxiang Chang, Bo Ren, Kun Guo, Can Li, Pengfei Ma, Jinyong Leng, Pu Zhou, "High-power all-fiber linearly polarized Yb-doped chirped pulse amplifier based on active polarization control," Chin. Opt. Lett. 22, 041403 (2024) Copy Citation Text show less
    References

    [1] M. Malinauskas, A. Žukauskas, S. Hasegawa et al. Ultrafast laser processing of materials: from science to industry. Light Sci. Appl., 5, e16133(2016).

    [2] M. Müller, C. Aleshire, A. Klenke et al. 10.4  kW coherently combined ultrafast fiber laser. Opt. Lett., 45, 3083(2020).

    [3] R. Klas, A. Kirsche, M. Gebhardt et al. Ultra-short-pulse high-average-power megahertz-repetition-rate coherent extreme-ultraviolet light source. PhotoniX, 2, 4(2021).

    [4] J. Buldt, T. Heuermann, Z. Wang et al. High-power two-color plasma-based THz generation driven by a Tm-doped fiber laser. Opt. Lett., 48, 3403(2023).

    [5] D. J. Richardson, J. Nilsson, W. A. Clarkson. High power fiber lasers: current status and future perspectives. J. Opt. Soc. Am. B, 27, B63(2010).

    [6] M. N. Zervas, C. A. Codemard. High power fiber lasers: a review. IEEE J. Sel. Top. Quantum Electron., 20, 219(2014).

    [7] J. Zuo, X. Lin. High-power laser systems. Laser Photonics Rev., 16, 2100741(2022).

    [8] C. Gaida, M. Gebhardt, T. Heuermann et al. Ultrafast thulium fiber laser system emitting more than 1 kW of average power. Opt. Lett., 43, 5853(2018).

    [9] T. Wang, C. Li, B. Ren et al. High-power femtosecond laser generation from an all-fiber linearly polarized chirped pulse amplifier. High Power Laser Sci. Eng., 11, e25(2023).

    [10] Y. Liu, J. Wu, X. Wen et al. >100 W GHz femtosecond burst mode all-fiber laser system at 1.0 µm. Opt. Express, 28, 13414(2020).

    [11] D. Strickland, G. Mourou. Compression of amplified chirped optical pulses. Opt. Commun., 55, 447(1985).

    [12] Y. Zhang, J. Wang, H. Teng et al. Double-pass pre-chirp managed amplification with high gain and high average power. Opt. Lett., 46, 3115(2021).

    [13] V. Shumakova, V. F. Pecile, J. Fellinger et al. Spectrally tunable high-power Yb:fiber chirped-pulse amplifier. Photonics Res., 10, 2309(2022).

    [14] A. Klenke, M. Müller, H. Stark et al. Coherent beam combination of ultrafast fiber lasers. IEEE J. Sel. Top. Quantum Electron., 24, 0902709(2018).

    [15] S. Chen, T. Zhou, Q. Du et al. Broadband spectral combining of three pulse-shaped fiber amplifiers with 42 fs compressed pulse duration. Opt. Express, 31, 12717(2023).

    [16] H. Chang, Q. Chang, J. Xi et al. First experimental demonstration of coherent beam combining of more than 100 beams. Photonics Res., 8, 1943(2020).

    [17] C. Gaida, M. Gebhardt, T. Heuermann et al. Watt-scale super-octave mid-infrared intrapulse difference frequency generation. Light Sci. Appl., 7, 94(2018).

    [18] J. Wang, R. Chen, G. Chang. On the frequency spanning of SPM-enabled spectral broadening: analytical solutions. Opt. Express, 30, 33664(2022).

    [19] P. Zhou, L. Huang, J. Xu et al. High power linearly polarized fiber laser: generation, manipulation and application. Sci. China Technol. Sci., 60, 1784(2017).

    [20] W. S. Brocklesby. Progress in high average power ultrafast lasers. Eur. Phys. J. Spec. Top., 224, 2529(2015).

    [21] R. Stolen. Polarization effects in fiber Raman and Brillouin lasers. IEEE J. Quantum Electron., 15, 1157(1979).

    [22] M. O. V. Deventer, A. J. Boot. Polarization properties of stimulated Brillouin scattering in single-mode fibers. J. Lightwave Technol., 12, 585(1994).

    [23] G. P. Agrawal. Nonlinear Fiber Optics, 5th(2012).

    [24] K. Brar, M. Savage-Leuchs, J. Henrie et al. Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers. Proc. SPIE, 8961, 89611R(2014).

    [25] R. Tao, X. Wang, P. Zhou. Comprehensive theoretical study of mode instability in high-power fiber lasers by employing a universal model and its implications. IEEE J. Sel. Top. Quantum Electron., 24, 0903319(2018).

    [26] C. Jauregui, C. Stihler, S. Kholaif et al. Mitigation of transverse mode instability in polarization maintaining, high-power fiber amplifiers. Proc. SPIE, 11665, 116650V(2021).

    [27] G. Palma-Vega, D. Hässner, S. Kuhn et al. TMI and polarization static energy transfer in Yb-doped low-NA PM fibers. Opt. Express, 31, 24730(2023).

    [28] S. Ren, G. Wang, W. Li et al. 3 kW power-level all-fiberized superfluorescent fiber source with linear polarization and near-diffraction-limited beam quality. Appl. Opt., 61, 3952(2022).

    [29] S. Ren, P. Ma, Y. Chen et al. 5 kW-level narrow linewidth fiber laser output realized by homemade polarization-maintained fiber. Infrared Laser Eng., 52, 20220900(2023).

    [30] Y. Wang, W. Peng, H. Liu et al. Linearly polarized fiber amplifier with narrow linewidth of 5 kW exhibiting a record output power and near-diffraction-limited beam quality. Opt. Lett., 48, 2909(2023).

    [31] G. Wang, J. Song, Y. Chen et al. Six kilowatt record all-fiberized and narrow-linewidth fiber amplifier with near-diffraction-limited beam quality. High Power Laser Sci. Eng., 10, e22(2022).

    [32] P. Ma, T. Yao, Y. Chen et al. New progress of high-power narrow-linewidth fiber lasers. Proc. SPIE, 12310, 123100E(2022).

    [33] Z. Huang, C. Liu, J. Li et al. Fiber polarization control based on a fast locating algorithm. Appl. Opt., 52, 6663(2013).

    [34] B. Koch, A. Hidayat, H. Zhang et al. Optical endless polarization stabilization at 9 krad/s with FPGA-based controller. IEEE Photon. Technol. Lett., 20, 961(2008).

    [35] E. Assémat, D. Dargent, A. Picozzi et al. Polarization control in spun and telecommunication optical fibers. Opt. Lett., 36, 4038(2011).

    [36] D.-B. Wang, J.-F. Zhou. Research on polarization control in the long distance fiber-optic sensing. Proc. SPIE, 8914, 89141B(2013).

    [37] G. D. Goodno, S. J. McNaught, J. E. Rothenberg et al. Active phase and polarization locking of a 1.4 kW fiber amplifier. Opt. Lett., 35, 1542(2010).

    [38] G. D. Goodno, S. J. McNaught, M. E. Weber et al. Multichannel polarization stabilization for coherently combined fiber laser arrays. Opt. Lett., 37, 4272(2012).

    [39] Y. Wang, Y. Feng, X. Wang et al. 6.5 GHz linearly polarized kilowatt fiber amplifier based on active polarization control. Appl. Opt., 56, 2760(2017).

    [40] R. Su, Y. Liu, B. Yang et al. Active polarization control of a 1.43 kW narrow linewidth fiber amplifier based on SPGD algorithm. J. Opt., 19, 045802(2017).

    [41] N. Platonov, R. Yagodkin, J. De La Cruz et al. Up to 2.5-kW on non-PM fiber and 2.0-kW linear polarized on PM fiber narrow linewidth CW diffraction-limited fiber amplifiers in all-fiber format. Proc. SPIE, 10512, 105120E(2018).

    [42] S. Ren, H. Chang, P. Ma et al. 3.38 kW all-fiberized narrow linewidth fiber laser based on active polarization control using RMS-Prop algorithm. Opt. Laser Technol., 166, 109634(2023).

    [43] M. Jiang, H. Wu, Y. An et al. Fiber laser development enabled by machine learning: review and prospect. PhotoniX, 3, 16(2022).

    [44] H. G. Winful. Self‐induced polarization changes in birefringent optical fibers. Appl. Phys. Lett., 47, 213(1985).

    [45] M.-J. Wang, W.-G. Jia, S.-Y. Zhang et al. Influence of Raman effect on the state of polarization evolution in a low-birefringence fiber. Acta Phys. Sin., 63, 104204(2014).

    [46] T. Wang, C. Li, B. Ren et al. Time jitter and intensity noise of an all-fiber high-power harmonic Mamyshev oscillator. J. Lightwave Technol., 41, 6369(2023).

    [47] B. Ren, C. Li, T. Wang et al. All-polarization-maintaining figure-9 mode-locked Tm-doped fiber laser with amplitude noise and timing jitter suppression. J. Lightwave Technol., 41, 733(2023).

    [48] J. Kim, Y. Song. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Adv. Opt. Photonics, 8, 465(2016).

    Tao Wang, Shuai Ren, Hongxiang Chang, Bo Ren, Kun Guo, Can Li, Pengfei Ma, Jinyong Leng, Pu Zhou, "High-power all-fiber linearly polarized Yb-doped chirped pulse amplifier based on active polarization control," Chin. Opt. Lett. 22, 041403 (2024)
    Download Citation