• Acta Photonica Sinica
  • Vol. 51, Issue 8, 0851509 (2022)
Lin LI, Duoteng ZHANG, and Yunwei QU
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/gzxb20225108.0851509 Cite this Article
    Lin LI, Duoteng ZHANG, Yunwei QU. Structure and Biomedical Applications of Small Molecular Super-resolution Fluorescent Imaging Dyes(Invited)[J]. Acta Photonica Sinica, 2022, 51(8): 0851509 Copy Citation Text show less
    References

    [1] H W LIU, L CHEN, C XU et al. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chemical Society Reviews, 47, 7140-7180(2018).

    [2] S WANG, W X REN, J T HOU et al. Fluorescence imaging of pathophysiological microenvironments. Chemical Society Reviews, 50, 8887-8902(2021).

    [3] L SCHERMELLEH, A FERRAND, T HUSER et al. Super-resolution microscopy demystified. Nature Cell Biology, 21, 72-84(2019).

    [4] J B PAWLEY. Handbook of biological confocal microscopy(1995).

    [5] E K ABBE. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung. Archiv Für Mikroskopische Anatomie, 913-468(1873).

    [6] S W HELL, J WICHMANN. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics Letters, 19, 780-782(1994).

    [7] M G GUSTAFSSON. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of Microscopy, 198, 82-87(2000).

    [8] E BETZIG, G H PATTERSON, R SOUGRAT et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006).

    [9] M J RUST, M BATES, X W ZHUANG. Sub-diffraction-limit imaging by Stochastic Optical Reconstruction Microscopy (STORM). Nature Methods, 3, 793-795(2006).

    [10] M FERNÁNDEZ-SUÁREZ, A Y TING. Fluorescent probes for super-resolution imaging in living cells. Nature Reviews Molecular Cell Biology, 9, 929(2008).

    [11] T A KLAR, S W HELL. Subdiffraction resolution in far-field fluorescence microscopy. Optics Letters, 24, 954-956(2007).

    [12] R M DICKSON, A B CUBITT, A B TSIEN et al. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature, 388, 355-358(1997).

    [13] S SAMANTA, W GONG, W LI et al. Organic fluorescent probes for Stochastic Optical Reconstruction Microscopy (STORM): recent highlights and future possibilities. Coordination Chemistry Reviews, 380, 17-34(2019).

    [14] M G GUSTAFSSON. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proceedings of the National Academy of Sciences of the United States of America, 102, 13081-13086(2005).

    [15] S V D LINDE, M SAUER. How to switch a fluorophore: from undesired blinking to controlled photoswitching. Chemical Society Reviews, 43, 1076-1087(2013).

    [16] J WU, Z SHI, L ZHU et al. The design and bioimaging applications of NIR fluorescent organic dyes with high brightness. Advanced Optical Materials, 10, 2102514(2022).

    [17] L WANG, W DU, Z HU et al. Hybrid rhodamine fluorophores in the visible/NIR region for biological imaging. Angewandte Chemie International Edition, 58, 14026-14043(2019).

    [18] V P BOYARSKIY, V N BELOV, R MEDDA et al. Photostable, amino reactive and water-soluble fluorescent labels based on sulfonated rhodamine with a rigidized xanthene fragment. Chemistry - A European Journal, 14, 1784-1792(2008).

    [19] A N BUTKEVICH, V N BELOV, K KOLMAKOV et al. Hydroxylated fluorescent dyes for live-cell labeling: synthesis, spectra and super-resolution STED. Chemistry, 23, 12114-12119(2017).

    [20] L WANG, M TRAN, E D'ESTE et al. A general strategy to develop cell permeable and fluorogenic probes for multicolour nanoscopy. Nature Chemistry, 12, 165-172(2019).

    [21] J B GRIMM, B P ENGLISH, J CHEN et al. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nature Methods, 12, 244-250(2015).

    [22] Z YE, W YANG, C WANG et al. Quaternary piperazine substituted rhodamines with enhanced brightness for super-resolution Imaging. Journal of the American Chemical Society, 141, 14491-14495(2019).

    [23] Y SONG, X ZHANG, Z SHEN et al. Improving brightness and stability of Si-rhodamine for super-resolution imaging of mitochondria in living cells. Analytical Chemistry, 92, 12137-12144(2020).

    [24] A N BUTKEVICH, M L BOSSI, G LUKINAVIČIUS et al. Triarylmethane fluorophores resistant to oxidative photobluing. Journal of the American Chemical Society, 141, 981-989(2019).

    [25] C A WURM, K KOLMAKOV, GÖTTFERTF et al. Novel red fluorophores with superior performance in STED microscopy. Optical Nanoscopy, 1, 7(2012).

    [26] M FU, Y XIAO, X QIAN et al. A design concept of long-wavelength fluorescent analogs of rhodamine dyes: replacement of oxygen with silicon atom. Chemical Communications, 1780-1782(2008).

    [27] Y YU, S WU, J NOWAK et al. Live-cell imaging of the cytoskeleton in elongating cotton fibres. Nature Plants, 5, 498-504(2019).

    [28] G LUKINAVIČIUS, C BLAUKOPF, E PERSHAGEN et al. SiR-Hoechst is a far-red DNA stain for live-cell nanoscopy. Nature Communications, 6, 8497(2015).

    [29] K KOLMAKOV, E HEBISCH, T WOLFRAM et al. Far-red emitting fluorescent dyes for optical nanoscopy: fluorinated silicon-rhodamines (SiRF Dyes) and phosphorylated oxazines. Chemistry, 21, 13344-13356(2015).

    [30] P HORVÁTH, P ŠEBEJ, T ŠOLOMEK et al. Small-molecule fluorophores with large Stokes shifts: 9-Iminopyronin analogues as clickable tags. The Journal of Organic Chemistry, 80, 1299-1311(2014).

    [31] L WU, K BURGESS. Fluorescent amino- and thiopyronin dyes. Organic Letters, 10, 1779-1782(2008).

    [32] A N BUTKEVICH, G LUKINAVIČIUS, E D'ESTE et al. Cell-permeant large Stokes shift dyes for transfection-free multicolor nanoscopy. Journal of the American Chemical Society, 139, 12378-12381(2017).

    [33] H SCHILL, S NIZAMOV, F BOTTANELLI et al. 4‐Trifluoromethyl-substituted coumarins with large Stokes shifts: synthesis, bioconjugates, and their use in super-resolution fluorescence microscopy. Chemistry-A European Journal, 19, 16556-16565(2013).

    [34] G JIANG, T B REN, E D'ESTE et al. A synergistic strategy to develop photostable and bright dyes with long Stokes shift for nanoscopy. Nature Communications, 13, 2264(2022).

    [35] M BATES, T R BLOSSER, X W ZHUANG. Short-range spectroscopic ruler based on a single-molecule optical switch. Physical Review Letters, 94, 108101(2005).

    [36] M HEILEMANN, E MARGEAT, R KASPER et al. Carbocyanine dyes as efficient reversible single-molecule optical switch. Journal of the American Chemical Society, 127, 3801-3806(2005).

    [37] N R CONLEY, J S BITEEN, W E MOERNER. Cy3-Cy5 covalent heterodimers for single-molecule photoswitching. The Journal of Physical Chemistry B, 112, 11878-11880(2008).

    [38] K H KNAUER, R GLEITER. Photochromie von rhodaminderivaten. Angewandte Chemie, 89, 116-117(1977).

    [39] J FÖLLING, V BELOV, R KUNETSKY et al. Photochromic rhodamines provide nanoscopy with optical sectioning. Angewandte Chemie International Edition, 46, 6266-6270(2007).

    [40] M K LEE, P RAI, J WILLIAMS et al. Small-molecule labeling of live cell surfaces for three-dimensional super-resolution microscopy. Journal of the American Chemical Society, 136, 14003-14006(2014).

    [41] S J LORD, N R CONLEY, H L D LEE et al. A photoactivatable push-pull fluorophore for single-molecule imaging in live cells. Journal of the American Chemical Society, 130, 9204-9205(2008).

    [42] H L D LEE, S J LORD, S IWANAGA et al. Superresolution imaging of targeted proteins in fixed and living cells using photoactivatable organic fluorophores. Journal of the American Chemical Society, 132, 15099-15101(2010).

    [43] J B GRIMM, B P ENGLISH, H CHOI et al. Bright photoactivatable fluorophores for single-molecule imaging. Nature Methods, 13, 985-988(2016).

    [44] R LINCOLN, L E GREENE, W ZHANG et al. Mitochondria alkylation and cellular trafficking mapped with a lipophilic BODIPY-acrolein fluorogenic probe. Journal of the American Chemical Society, 139, 16273-16281(2017).

    [45] Y ZHANG, K H SONG, S TANG et al. Far-red photoactivatable BODIPYs for the super-resolution imaging of live cells. Journal of the American Chemical Society, 140, 12741-12745(2018).

    [46] J TANG, M A ROBICHAUX, K L WU et al. Single-atom fluorescence switch: a general approach towards visible light-activated dyes for biological imaging. Journal of the American Chemical Society, 141, 14699-14706(2019).

    [47] Z YE, H YU, W YANG et al. A strategy to lengthen the on-time of photochromic rhodamine spirolactam for super-resolution photoactivated localization microscopy. Journal of the American Chemical Society, 141, 6527-6536(2019).

    [48] E A HALABI, D PINOTSI, P R FUENTES. Photoregulated fluxional fluorophores for live-cell super-resolution microscopy with no apparent photobleaching. Nature Communications, 10, 1232(2019).

    [49] Y ZHENG, Z YE, Z LIU et al. Nitroso-caged rhodamine: a superior green light-activatable fluorophore for single-molecule localization super-resolution imaging. Analytical Chemistry, 93, 7833-7842(2021).

    [50] J C VAUGHAN, G T DEMPSEY, E SUN et al. Phosphine quenching of cyanine dyes as a versatile tool for fluorescence microscopy. Journal of the American Chemical Society, 135, 1197-1200(2013).

    [51] G LUKINAVIČIUS, K UMEZAWA, N OLIVIER et al. A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nature Chemistry, 5, 132-139(2013).

    [52] S N UNO, M KAMIYA, T YOSHIHARA et al. A spontaneously blinking fluorophore based on intramolecular spirocyclization for live-cell super-resolution imaging. Nature Chemistry, 6, 681-689(2014).

    [53] D HARA, S N UNO, T MOTOKI et al. Silinanyl rhodamines and silinanyl fluoresceins for super-resolution microscopy. The Journal of Physical Chemistry B, 125, 8703-8711(2021).

    [54] W CHI, Q QIAO, C WANG et al. Descriptor ΔGC-O enables the quantitative design of spontaneously blinking rhodamines for live-cell super-resolution Imaging. Angewandte Chemie International Edition, 59, 20215-20223(2020).

    [55] Q QI, W CHI, Y LI et al. A H-bond strategy to develop acid-resistant photoswitchable rhodamine spirolactams for super-resolution single-molecule localization microscopy. Chemical Science, 10, 4914-4922(2019).

    [56] B WANG, M XIONG, J SUSANTO et al. Transforming rhodamine dyes for (d)STORM super-resolution microscopy via 1, 3-Disubstituted imidazolium substitution. Angewandte Chemie International Edition, 61, e202113612(2021).

    [57] B ROUBINET, M WEBER, H SHOJAEI et al. Fluorescent photoswitchable diarylethenes for biolabeling and single-molecule localization microscopies with optical superresolution. Journal of the American Chemical Society, 139, 6611-6620(2017).

    [58] A MOROZUMI, M KAMIYA, S N UNO et al. Spontaneously blinking fluorophores based on nucleophilic addition/dissociation of intracellular glutathione for live-cell super-resolution imaging. Journal of the American Chemical Society, 142, 9625-9633(2020).

    [59] S WÄLDCHEN, J LEHMANN, T KLEIN et al. Light-induced cell damage in live-cell super-resolution microscopy. Scientific Reports, 5, 15348(2015).

    [60] Q ZHENG, M F JUETTE, S JOCKUSCH et al. Ultra-stable organic fluorophores for single-molecule research. Chemical Society Reviews, 43, 1044-1056(2013).

    [61] P TINNEFELD, T CORDES. 'Self-healing' dyes: intramolecular stabilization of organic fluorophores. Nature Methods, 9, 426-427(2012).

    [62] Q ZHENG, S JOCKUSCH, Z ZHOU et al. The contribution of reactive oxygen species to the photobleaching of organic fluorophores. Photochemistry and Photobiology, 90, 448-454(2013).

    [63] Z YANG, L LI, J LING et al. Cyclooctatetraene-conjugated cyanine mitochondrial probes minimize phototoxicity in fluorescence and nanoscopic imaging. Chemical Science, 11, 8506-8516(2020).

    [64] L LI, H SUN. Next generation of small-molecule fluorogenic probes for bioimaging. Biochemistry, 59, 216-217(2019).

    Lin LI, Duoteng ZHANG, Yunwei QU. Structure and Biomedical Applications of Small Molecular Super-resolution Fluorescent Imaging Dyes(Invited)[J]. Acta Photonica Sinica, 2022, 51(8): 0851509
    Download Citation