• Acta Photonica Sinica
  • Vol. 50, Issue 8, 0850208 (2021)
Hailin WANG, Jing DONG, Heyan LIU, Jingjie HAO, Xiao ZHU, and Jinwei ZHANG*
Author Affiliations
  • School of Optics and Electronic Information, Wuhan National laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, China
  • show less
    DOI: 10.3788/gzxb20215008.0850208 Cite this Article
    Hailin WANG, Jing DONG, Heyan LIU, Jingjie HAO, Xiao ZHU, Jinwei ZHANG. Research Progress of High-power Ultrafast Thin-disk Laser Technology (Invited)[J]. Acta Photonica Sinica, 2021, 50(8): 0850208 Copy Citation Text show less
    References

    [1] T H MAIMAN. Stimulated optical radiation in ruby. Nature, 187, 493-494(1960).

    [2] D STRICKLAND, G MOUROU. Compression of amplified chirped optical pulses. Optics communications, 55, 447-449(1985).

    [3] J LIMPERT, F ROSER, T SCHREIBER et al. High-power ultrafast fiber laser systems. IEEE Journal of selected topics in Quantum Electronics, 12, 233-244(2006).

    [4] J Q ZHAO, S C RUAN, P G YAN et al. Cladding-filled graphene in a photonic crystal fiber as a saturable absorber and its first application for ultrafast all-fiber laser. Optical Engineering, 52, 106105(2013).

    [5] N A CHAITANYA, A AADHI, R P SINGH et al. Type-I frequency-doubling characteristics of high-power, ultrafast fiber laser in thick BIBO crystal. Optics Letters, 39, 5419-5422(2014).

    [6] Mi LI, Hao HU, Qingsong GAO等. Dual concentration doped Nd∶YAG composite ceramic slab laser with high power. Acta Optica Sinica, 37(2017).

    [8] A GIESEN, H HÜGEL, A VOSS. Scalable concept for diode-pumped high-power solid-state lasers. Applied Physics B, 58, 365-372(1994).

    [9] J BRONS, V PERVAK, E FEDULOVA et al. Energy scaling of Kerr-lens mode-locked thin-disk oscillators. Optics Letters, 39, 6442-6445(2014).

    [10] F SALTARELLI, A DIEBOLD, I J GRAUMANN et al. Modelocking of a thin-disk laser with the frequency-doubling nonlinear-mirror technique. Optics Express, 25, 23254-23266(2017).

    [11] F SALTARELLI, I J GRAUMANN, L LANG et al. 350-W average-power SESAM-modelocked ultrafast thin-disk laser, 1(2019).

    [12] Zhitao HU, Bing HE, Jun ZHOU等. Research progress in thermal effect of high power fiber lasers. Laser & Optoelectronics Progress, 53(2016).

    [13] Suying LIAO, Mali GONG. New development of nonlinearity management in high power fiber lasers and amplifiers. Laser & Optoelectronics Progress, 44, 27-33(2007).

    [14] Lingling ZHANG, Junqing MENG, Yan HUANG等. Recent advances in high-power solid-state slab lasers. Laser & Optoelectronics Progress, 42, 33-36(2005).

    [15] A GIESEN, J SPEISER. Fifteen years of work on thin-disk lasers: results and scaling laws. IEEE Journal of Selected Topics in Quantum Electronics, 13, 598-609(2007).

    [16] H FATTAHI, H G BARROS, M GORJAN et al. Third-generation femtosecond technology. Optica, 1, 45-63(2014).

    [17] J SHANG, X ZHU, G ZHU et al. The influences of amplified spontaneous emission, crystal temperature and round-trip loss on scaling of CW thin-disk laser. Optics & Laser Technology, 44, 1359-1371(2012).

    [18] G ZHU, X ZHU, C ZHU et al. Optical model and optimal output coupler for a continuous wave Yb: YAG thin-disk laser with multiple-disk configuration. Applied Optics, 51, 6411-6420(2012).

    [20] Y HUANG, X ZHU, G ZHU et al. A multi-pass pumping scheme for thin disk lasers with good anti-disturbance ability. Optics Express, 23, 4605-4613(2015).

    [21] G SPÜHLER, T SÜDMEYER et al. 16.2-W average power from a diode-pumped femtosecond Yb: YAG thin disk laser. Optics Letters, 25, 859-861(2000).

    [22] C J SARACENO, F EMAURY, O H HECKL et al. 275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment. Optics Express, 20, 23535-23541(2012).

    [23] C J SARACENO, F EMAURY, C SCHRIBER et al. Ultrafast thin-disk laser with 80 μJ pulse energy and 242 W of average power. Optics Letters, 39, 9-12(2014).

    [24] O PRONIN, J BRONS, C GRASSE et al. High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator. Optics Letters, 36, 4746-4748(2011).

    [25] M POETZLBERGER, J ZHANG, S GRÖBMEYER et al. Kerr-lens mode-locked thin-disk oscillator with 50% output coupling rate. Optics Letters, 44, 4227-4230(2019).

    [26] I J GRAUMANN, F SALTARELLI, L LANG et al. Power-scaling of nonlinear-mirror modelocked thin-disk lasers. Optics Express, 27, 37349-37363(2019).

    [27] Y PENG, Z WANG, D LI et al. A 12.1-W SESAM mode-locked Yb: YAG thin disk laser. Chinese Physics B, 25(2016).

    [28] F BRUNNER, E INNERHOFER, S V MARCHESE et al. Powerful red-green-blue laser source pumped with a mode-locked thin disk laser. Optics Letters, 29, 1921-1923(2004).

    [29] J NEUHAUS, D BAUER, J ZHANG et al. Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry. Optics Express, 16, 20530-20539(2008).

    [30] C R E BAER, C KRÄNKEL, C J SARACENO et al. Femtosecond thin-disk laser with 141 W of average power. Optics Letters, 35, 2302-2304(2010).

    [31] D BAUER, F SCHÄTTIGER, J KLEINBAUER et al. Energies above 30 µJ and average power beyond 100 W directly from a mode-locked thin-disk oscillator(2011).

    [32] D BAUER, I ZAWISCHA, D H SUTTER et al. Mode-locked Yb: YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion. Optics Express, 20, 9698-9704(2012).

    [33] J ZHANG, J BRONS, N LILIENFEIN et al. 260-megahertz, megawatt-level thin-disk oscillator. Optics Letters, 40, 1627-1630(2015).

    [34] J BRONS, V PERVAK, D BAUER et al. Powerful 100-fs-scale Kerr-lens mode-locked thin-disk oscillator. Optics Letters, 41, 3567-3570(2016).

    [35] Y PENG, J ZHANG, Z WANG et al. Generation of 15W femtosecond laser pulse from a Kerr-lens mode-locked Yb:YAG thin-disk oscillator. Chinese Physics B, 25(2016).

    [36] C PARADIS, N MODSCHING, V J WITTWER et al. 128-fs pulses from a kerr-lens modelocked Yb: LuO thin-disk laser, 3(2017).

    [37] N MODSCHING, J FISCHER et al. Sub-100-fs Kerr lens mode-locked Yb:Lu2O3 thin-disk laser oscillator operating at 21 W average power. Optics Express, 27, 16111-16120(2019).

    [38] K STANKOV, J JETHWA. A new mode-locking technique using a nonlinear mirror. Optics Communications, 66, 41-46(1988).

    [39] C J SARACENO, O H HECKL, C R BAER et al. Sub-100 femtosecond pulses from a SESAM modelocked thin disk laser. Applied Physics B, 106, 559-562(2012).

    [40] C SCHRIBER, L MERCERON, A DIEBOLD et al. Pushing SESAM modelocked thin-disk lasers to shortest pulse durations, 4(2014).

    [41] N MODSCHING, C PARADIS, F LABAYE et al. Kerr lens mode-locked Yb: CALGO thin-disk laser. Optics Letters, 43, 879-882(2018).

    [42] C PARADIS, N MODSCHING, V J WITTWER et al. Generation of 35-fs pulses from a Kerr lens mode-locked Yb:Lu2O3 thin-disk laser. Optics Express, 25, 14918-14925(2017).

    [43] K BEIL, C J SARACENO, C SCHRIBER et al. Yb-doped mixed sesquioxides for ultrashort pulse generation in the thin disk laser setup. Applied Physics B, 113, 13-18(2013).

    [44] J ZHANG, S GRÖBMEYER et al. 270 fs, 30-W-level Kerr-lens mode-locked Ho YAG thin-disk oscillator at 2 μm, 2(2017).

    [45] W PENG, L M YANG, J LIU et al. High power 2 µm femtosecond fiber laser. Optics Express, 21, 21374-21379(2013).

    [46] U N SINGH, B M WALSH, J YU et al. Twenty years of Tm: Ho: YLF and LuLiF laser development for global wind and carbon dioxide active remote sensing. Optical Materials Express, 5, 827-837(2015).

    [47] W ZHOU, X FAN, H XUE et al. Stable passively harmonic mode-locking dissipative pulses in 2µm solid-state laser. Optics Express, 25, 1815-1823(2017).

    [48] L GRAFENSTEIN, M BOCK, D UEBERSCHAER et al. 2.05 µm chirped pulse amplification system at a 1 kHz repetition rate—2.4 ps pulses with 17 GW peak power. Optics Letters, 45, 3836-3839(2020).

    [49] J ZHANG, F SCHULZE et al. High‐power, high‐efficiency Tm: YAG and Ho: YAG thin‐disk lasers. Laser & Photonics Reviews, 12, 1700273(2018).

    [50] GRAFENSTEIN LVON, M BOCK, D UEBERSCHAER et al. Picosecond 34 mJ pulses at kHz repetition rates from a Ho:YLF amplifier at 2 µm wavelength. Optics Express, 23, 33142-33149(2015).

    [51] G RENZ, J SPEISER, A GIESEN. 2µm Ho-YAG and Cr:ZnSe Thin Disk cw Lasers(2011).

    [52] G STOEPPLER, D PARISI, M TONELLI et al. High-efficiency 1.9 µm Tm3+:LiLuF4 thin-disk laser. Optics Letters, 37, 1163-1165(2012).

    [53] G RENZ, J SPEISER, A GIESEN et al. Cr: ZnSe thin disk cw laser, 8599, 85991M(2013).

    [54] X MATEOS, S LAMRINI, K SCHOLLE et al. Holmium thin-disk laser based on Ho: KY (WO42/KY (WO42 epitaxy with 60% slope efficiency and simplified pump geometry. Optics Letters, 42, 3490-3493(2017).

    [55] J ZHANG, O PRONIN. -μm thin-disk lasers. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-11(2).

    [56] S TOMILOV, M HOFFMANN, J HEIDRICH et al. High-power Ho: YAG thin-disk laser and first SESAM modelocking, 2(2020).

    [57] C HÖNNINGER, I JOHANNSEN, M MOSER et al. Diode-pumped thin-disk Yb:YAG regenerative amplifier. Applied Physics B, 65, 423-426(1997).

    [58] C STOLZENBURG, A GIESEN. Picosecond regenerative Yb: YAG thin disk amplifier at 200 kHz repetition rate and 62 W output power(2007).

    [59] O H HECKL, J KLEINBAUER, D BAUER et al. Ultrafast thin-disk lasers, 93-115(2016).

    [60] T METZGER, A SCHWARZ, C Y TEISSET et al. High-repetition-rate picosecond pump laser based on a Yb: YAG disk amplifier for optical parametric amplification. Optics Letters, 34, 2123-2125(2009).

    [61] C Y TEISSET, M SCHULTZE, R BESSING et al. 300 W picosecond thin-disk regenerative amplifier at 10 kHz repetition rate, 1(2013).

    [62] M CHYLA, T MIURA, M SMRZ et al. Optimization of beam quality and optical-to-optical efficiency of Yb: YAG thin-disk regenerative amplifier by pulsed pumping. Optics Letters, 39, 1441-1444(2014).

    [63] S KLINGEBIEL, M SCHULTZE, C Y TEISSET et al. 220mJ, 1 kHz picosecond regenerative thin-disk amplifier, 11(2015).

    [64] R JUNG, J TÜMMLER, I WILL. Regenerative thin-disk amplifier for 300 mJ pulse energy. Optics Express, 24, 883-887(2016).

    [65] T NUBBEMEYER, M KAUMANNS, M UEFFING et al. 1 kW, 200 mJ picosecond thin-disk laser system. Optics Letters, 42, 1381-1384(2017).

    [66] M SMRZ, M CHYLA, J MUZIK et al. Compact, picosecond, kw-class thin-disk laser perla for Hi-tech industrial applications. MM Science Journal, 3620-3625(2019).

    [67] P KRÖTZ, C WANDT, C GREBING et al. Towards 2 kW, 20 kHz ultrafast thin-disk based regenerative amplifiers, 8(2019).

    [68] S S SCHAD, C STOLZENBURG, K MICHEL et al. Latest advances in high brightness disk lasers. Laser Technik Journal, 11, 49-53(2014).

    [69] P GEORGES, F ESTABLE, F SALIN et al. High-efficiency multipass Ti: sapphire amplifiers for a continuous-wave single-mode laser. Optics Letters, 16, 144-146(1991).

    [70] H PLAESSMANN, S A RÉ, J J AIONIS et al. Multipass diode-pumped solid-state optical amplifier. Optics Letters, 18, 1420-1422(1993).

    [71] A M SCOTT, G COOK, A P DAVIES. Efficient high-gain laser amplification from a low-gain amplifier by use of self-imaging multipass geometry. Applied Optics, 40, 2461-2467(2001).

    [72] D MÜLLER, S ERHARD, O RONSIN et al. Thin disk multi-pass amplifier, 278(2003).

    [73] S KEPPLER, C WANDT, M HORNUNG et al. Multipass amplifiers of POLARIS, 8780, 87800I(2013).

    [74] Y OCHI, K NAGASHIMA, M MARUYAMA et al. Effective multi-pass amplification system for Yb: YAG thin-disk laser, 31(2017).

    [75] M ZWILICH, B EWERS. Coherent beam combining of multipass thin-disk lasers with active phase control. OSA Continuum, 3, 3176-3186(2020).

    [76] K SCHUHMANN, M AHMED, A ANTOGNINI et al. Thin-disk laser multi-pass amplifier, 9342, 93420U(2015).

    [77] K SCHUHMANN, K KIRCH, M MARSZALEK et al. Multipass amplifiers with self-compensation of the thermal lens. Applied Optics, 57, 10323-10333(2018).

    [78] M ZEYEN, A ANTOGNINI, K KIRCH et al. Compact 20-pass thin-disk amplifier insensitive to thermal lensing(10896).

    [79] J P NEGEL, A LOESCHER, A VOSS et al. Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm. Optics Express, 23, 21064-21077(2015).

    [80] J P NEGEL, A LOESCHER, D BAUER et al. Second generation thin-disk multipass amplifier delivering picosecond pulses with 2 kW of average output power, 5(2016).

    [81] T DIETZ, M JENNE, D BAUER et al. Ultrafast thin-disk multi-pass amplifier system providing 1.9 kW of average output power and pulse energies in the 10 mJ range at 1 ps of pulse duration for glass-cleaving applications. Optics Express, 28, 11415-11423(2020).

    [82] C HERKOMMER, P KRÖTZ, R JUNG et al. Ultrafast thin-disk multipass amplifier with 720 mJ operating at kilohertz repetition rate for applications in atmospheric research. Optics Express, 28, 30164-30173(2020).

    [83] R JUNG, J TÜMMLER, T NUBBEMEYER et al. Two-channel thin-disk laser for high pulse energy, 7(2015).

    [84] S NAGEL, B METZGER, D BAUER et al. Thin-disk laser system operating above 10 kW at near fundamental mode beam quality. Optics Letters, 46, 965-968(2021).

    [85] D NICKEL, C STOLZENBURG, A GIESEN et al. Ultrafast thin-disk Yb: KY (WO42regenerative amplifier with a 200-kHz repetition rate. Optics Letters, 29, 2764-2766(2004).

    [86] M KAUMANNS, V PERVAK, D KORMIN et al. Multipass spectral broadening of 18 mJ pulses compressible from 1.3 ps to 41 fs. Optics Letters, 43, 5877-5880(2018).

    [87] T METZGER, C GREBING, C HERKOMMER et al. High-power ultrafast industrial thin-disk lasers, 110340, 110340N(2019).

    [88] J LU, Z Y HUANG, D WANG et al. Nonlinear compression of picosecond chirped pulse from thin-disk amplifier system through a gas-filled hollow-core fiber. Chinese Physics B, 25, 124207(2016).

    [89] B H CHEN, M KRETSCHMAR, D EHBERGER et al. Compression of picosecond pulses from a thin-disk laser to 30 fs at 4W average power. Optics Express, 26, 3861-3869(2018).

    [90] J KLEINBAUER, D ECKERT, S WEILER et al. 80 W ultrafast CPA-free disk laser, 68711, 68711B(2008).

    [91] B DANNECKER, J P NEGEL, A LOESCHER et al. Exploiting nonlinear spectral broadening in a 400 W Yb: YAG thin-disk multipass amplifier to achieve 2 mJ pulses with sub-150 fs duration. Optics Communications, 429, 180-188(2018).

    [92] M UEFFING, R LANGE, T PLEYER et al. Direct regenerative amplification of femtosecond pulses to the multimillijoule level. Optics Letters, 41, 3840-3843(2016).

    [93] J SPEISER. Scaling of thin-disk lasers-influence of amplified spontaneous emission. Journal of the Optical Society of America B, 26, 26-35(2009).

    [94] P PETERSON, A GAVRIELIDES, T NEWELL. ASE in thin disk lasers: theory and experiment. Optics Express, 19, 25672-25684(2011).

    [95] Y CHEN, G ZHU, H CHEN et al. Evaluation of amplified spontaneous emission in thin disk lasers using the spectral linewidth. Optics Express, 27, 12110-12125(2019).

    [96] J KRUSE, C VORHOLT, J SPEISER. Numerical simulations of amplified spontaneous emission in Yb:YAG thin-disk amplifiers, 47(2019).

    [97] H ZHOU, M CHYLA, S S NAGISETTY et al. A practical model of thin disk regenerative amplifier based on analytical expression of ASE lifetime, 10603, 1060303(2017).

    [98] M SCHULZ, R RIEDEL, A WILLNER et al. Pulsed operation of a high average power Yb: YAG thin-disk multipass amplifier. Optics Express, 20, 5038-5043(2012).

    [99] J H WOLTER, M A AHMED, T GRAF. Thin-disk laser operation of Ti: sapphire. Optics Letters, 42, 1624-1627(2017).

    [100] I PUPEZA, D SÁNCHEZ, J ZHANG et al. High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate. Nature Photonics, 9, 721-724(2015).

    [101] J ZHANG, N NAGL et al. Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm-1. Light: Science & Applications, 7, 17180(2018).

    [102] J ZHANG, K FRITSCH, Q WANG et al. Intra-pulse difference-frequency generation of mid-infrared (2.7-20 μm) by random quasi-phase-matching. Optics Letters, 44, 2986-2989(2019).

    [103] N MODSCHING, C PARADIS et al. Optical rectification of ultrafast Yb lasers: pushing power and bandwidth of terahertz generation in GaP. Journal of the Optical Society of America B, 36, 3039-3045(2019).

    [104] F MEYER, N HEKMAT, T VOGEL et al. Milliwatt-class broadband THz source driven by a 112 W, sub-100 fs thin-disk laser. Optics Express, 27, 30340-30349(2019).

    [105] F MEYER, T VOGEL et al. Single-cycle, MHz repetition rate THz source with 66 mW of average power. Optics Letters, 45, 2494-2497(2020).

    Hailin WANG, Jing DONG, Heyan LIU, Jingjie HAO, Xiao ZHU, Jinwei ZHANG. Research Progress of High-power Ultrafast Thin-disk Laser Technology (Invited)[J]. Acta Photonica Sinica, 2021, 50(8): 0850208
    Download Citation