[1] 刘虎, 杨振鹏, 武登云. 基于位移信号的磁悬浮飞轮转速估计[J]. 光学 精密工程, 2020, 28(5): 1116-1123.LIUH, YANGZ P, WUD Y. Estimation of rotor speed using displacement signals in magnetic suspended flywheel[J]. Opt. Precision Eng., 2020, 28(5): 1116-1123.(in Chinese)
[2] 李海涛, 侯林, 韩邦成. 双框架磁悬浮控制力矩陀螺框架系统的扰动抑制[J]. 光学 精密工程, 2019, 27(4): 868-878. doi: 10.3788/ope.20192704.0868LIH T, HOUL, HANB C. Disturbance rejection for the DGMSCMG’s gimbal system[J]. Opt. Precision Eng., 2019, 27(4): 868-878.(in Chinese). doi: 10.3788/ope.20192704.0868
[3] 熊万里, 孙文彪, 刘侃, 等. 高速电主轴主动磁悬浮技术研究进展[J]. 机械工程学报, 2021, 57(13): 1-17. doi: 10.3901/jme.2021.13.001XIONGW L, SUNW B, LIUK, et al. Active magnetic bearing technology development in high-speed motorized spindles[J]. Journal of Mechanical Engineering, 2021, 57(13): 1-17.(in Chinese). doi: 10.3901/jme.2021.13.001
[4] 吴华春, 涂星, 周建, 等. 磁悬浮转子不平衡振动控制研究综述[J]. 轴承, 2022(3): 1-9.WUH C, TUX, ZHOUJ, et al. Review on unbalanced vibration control for magnetic suspension rotor[J]. Bearing, 2022(3): 1-9.(in Chinese)
[5] 纪历, 马雪晴, 陈震民. 磁悬浮高速电机转子低频振动机理及补偿方法[J]. 中国机械工程, 2022, 33(17): 2053-2060. doi: 10.3969/j.issn.1004-132X.2022.17.006JIL, MAX Q, CHENZ M. Low frequency vibration mechanism for AMB high-speed motor rotor systems and its compensation strategy[J]. China Mechanical Engineering, 2022, 33(17): 2053-2060.(in Chinese). doi: 10.3969/j.issn.1004-132X.2022.17.006
[6] 高峻泽, 柳亦兵, 周传迪, 等. 主动磁悬浮轴承-储能飞轮转子系统振动主动控制[J]. 轴承, 2022(3): 80-85.GAOJ Z, LIUY B, ZHOUC D, et al. Active vibration control of active magnetic bearing-energy storage flywheel rotor system[J]. Bearing, 2022(3): 80-85.(in Chinese)
[7] L DU, P L CUI, X X ZHOU et al. Unbalance vibration control for MSCMG based on high-precision synchronous signal detection method. IEEE Sensors Journal, 21, 17917-17925(2021).
[8] X B XU, J H LIU, S CHEN. Synchronous force elimination in the magnetically suspended rotor system with an adaptation to parameter variations in the amplifier model. IEEE Transactions on Industrial Electronics, 65, 9834-9842(2018).
[9] P L CUI, L DU, X X ZHOU et al. Synchronous vibration moment suppression for AMBs rotor system in control moment gyros considering rotor dynamic unbalance. IEEE/ASME Transactions on Mechatronics, 27, 3210-3218(2022).
[10] 王雨楠, 刘昆. 基于变步长LMS方法的磁悬浮飞轮振动抑制[J]. 动力学与控制学报, 2022, 20(3): 77-82.WANGY N, LIUK. Vibration suppression of magnetic levitation flywheel based on variable step size lms method[J]. Journal of Dynamics and Control, 2022, 20(3): 77-82.(in Chinese)
[11] 徐向波, 陈劭, 刘晋浩. 重复控制与积分正反馈组合的磁轴承低功耗控制[J]. 光学 精密工程, 2017, 25(8): 2149-2154. doi: 10.3788/ope.20172508.2149XUX B, CHENS, LIUJ H. Low power control of magnetic bearing combined by repetitive control and positive integral feedback[J]. Opt. Precision Eng., 2017, 25(8): 2149-2154.(in Chinese). doi: 10.3788/ope.20172508.2149
[12] 崔培玲, 盖玉欢, 房建成, 等. 主被动磁悬浮转子的不平衡振动自适应控制[J]. 光学 精密工程, 2015, 23(1): 122-131. doi: 10.3788/ope.20152301.0122CUIP L, GEY H, FANGJ C, et al. Adaptive control for unbalance vibration of active-passive hybrid magnetically suspended rotor[J]. Opt. Precision Eng., 2015, 23(1): 122-131.(in Chinese). doi: 10.3788/ope.20152301.0122
[13] R HERZOG, P BUHLER, C GAHLER et al. Unbalance compensation using generalized Notch filters in the multivariable feedback of magnetic bearings. IEEE Transactions on Control Systems Technology, 4, 580-586(1996).
[14] S Q ZHENG, Q CHEN, H L REN. Active balancing control of AMB-rotor systems using a phase-shift Notch filter connected in parallel mode. IEEE Transactions on Industrial Electronics, 63, 3777-3785(2016).
[15] P L CUI, L DU, X X ZHOU et al. Harmonic vibration control of MSCMG based on multisynchronous rotating frame transformation. IEEE Transactions on Industrial Electronics, 69, 1717-1727(2022).
[16] 徐向波, 陈劭, 张亚楠. 基于复数相移陷波的磁悬浮转子系统自平衡控制[J]. 光学 精密工程, 2016, 24(4): 764-770. doi: 10.3788/ope.20162404.00-1bXUX B, CHENS, ZHANGY N. Autobalancing control of magnetically suspended motor systems based on plural phase-shift Notch filter[J]. Opt. Precision Eng., 2016, 24(4): 764-770.(in Chinese). doi: 10.3788/ope.20162404.00-1b
[17] J L LI, G LIU, S Q ZHENG et al. Micro-jitter control of magnetically suspended control moment gyro using adaptive LMS algorithm. IEEE/ASME Transactions on Mechatronics, 27, 327-335(2022).
[18] J X HE, Z Q DENG, C PENG et al. Reduction of the high-speed magnetically suspended centrifugal compressor harmonic vibration using cascaded phase-shifted Notch filters. IEEE Sensors Journal, 21, 1315-1323(2021).
[19] X B XU, J H LIU, S CHEN. Internal model control for reduction of bias and harmonic currents in hybrid magnetic bearing. Mechanical Systems and Signal Processing, 115, 70-81(2019).
[20] P L CUI, Z Y LIU, H XU et al. Harmonic vibration force suppression of magnetically suspended rotor with frequency-domain adaptive LMS. IEEE Sensors Journal, 20, 1166-1175(2020).
[21] R D YANG, Z Q DENG, C PENG et al. Frequency-varying suppression of vibration for active magnetic bearing using improved resonant controller. IEEE Transactions on Industrial Electronics, 69, 13494-13503(2022).
[22] J L LI, G LIU, P L CUI et al. An improved resonant controller for AMB-rotor system subject to displacement harmonic disturbance. IEEE Transactions on Power Electronics, 37, 5235-5244(2022).
[23] G LIU, J L LI, S Q ZHENG et al. Suppression of synchronous current using double input improved adaptive Notch filter algorithm. IEEE Transactions on Industrial Electronics, 67, 8599-8607(2020).
[24] P L CUI, L DU, X X ZHOU et al. Harmonic vibration moment suppression using hybrid repetitive control for active magnetic bearing system. Journal of Vibration and Control, 28, 2421-2434(2021).