[1] R R ORLANDI, T T KINGDOM, T L SMITH et al. International consensus statement on allergy and rhinology: rhinosinusitis 2021. International Forum of Allergy & Rhinology, 11, 213-739(2021).
[2] C T LIM, M K KORBONITS. Update on the clinicopathology of pituitary adenomas. Endocrine Practice, 24, 473-488(2018).
[3] D W KENNEDY. Endoscopic Sinus Surgery. Rhinosinusitis, 1-14(2008).
[4] Y CH HE. Research on Mechanism Design and Safety Control of Assisted Robot for Nasal Endoscopic Surgery(2019).
何玉成. 鼻内镜手术辅助机器人机构设计与安全控制研究(2019).
[5] G K SUN, Y L HE, Y YU et al. Fiber-optic navigation technology for continuum surgical robots: status and future perspectives. Journal of Mechanical Engineering, 59, 1-18(2023).
孙广开, 何彦霖, 于洋. 连续体手术机器人光纤导航技术现状和展望. 机械工程学报, 59, 1-18(2023).
[6] X P SHU, Q CHEN, L XIE. A novel robotic system for flexible ureteroscopy. The International Journal of Medical Robotics+Computer Assisted Surgery, 17, 1-11(2021).
[7] M HWANG, D S KWON. K-FLEX: a flexible robotic platform for scar-free endoscopic surgery. The International Journal of Medical Robotics + Computer Assisted Surgery, 16(2020).
[8] J H KAOUK, G P HABER, R AUTORINO et al. A novel robotic system for single-port urologic surgery: first clinical investigation. European Urology, 66, 1033-1043(2014).
[9] Y F CAO, Y X SHI, W Z HONG et al. Continuum robots for endoscopic sinus surgery: recent advances, challenges, and prospects. The International Journal of Medical Robotics + Computer Assisted Surgery, 19(2023).
[10] H B GILBERT, J NEIMAT, R J WEBSTER. Concentric tube robots as steerable needles: achieving follow-the-leader deployment. IEEE Transactions on Robotics, 31, 246-258(2015).
[11] J BURGNER, D C RUCKER, H B GILBERT et al. A telerobotic system for transnasal surgery. IEEE/ASME Transactions on Mechatronics, 19, 996-1006(2013).
[12] T L BRUNS, A A REMIREZ, M A EMERSON et al. A modular, multi-arm concentric tube robot system with application to transnasal surgery for orbital tumors. The International Journal of Robotics Research, 40, 521-533(2021).
[13] J LEGRAND, M OURAK, L VAN GERVEN et al. A miniature robotic steerable endoscope for maxillary sinus surgery called PliENT. Scientific Reports, 12, 2299(2022).
[14] J KIM, S KWON, Y MOON et al. Cable-movable rolling joint to expand workspace under high external load in a hyper-redundant manipulator. IEEE/ASME Transactions on Mechatronics, 27, 501-512(2021).
[15] Y X KONG, J L WANG, N ZHANG et al. Dexterity analysis and motion optimization of
[16] J ROSEN, L SEKHAR, D GLOZMAN et al. Roboscope: a flexible and bendable surgical robot for single portal Minimally Invasive Surgery, 2364-2370(2017).
[17] W Z HONG, L XIE, J H LIU et al. Development of a novel continuum robotic system for maxillary sinus surgery. ASME Transactions on Mechatronics, 23, 1226-1237(2018).
[18] T L LI, Z B ZHAO, J X GUO et al. Wavelength-phase hybrid coded catheter tip three-axis force optical fiber sensor with uncertain environment self-adaptivity. ASME Transactions on Mechatronics, 1-12(2024).
[19] T L LI, L QIU, H L REN. Distributed curvature sensing and shape reconstruction for soft manipulators with irregular cross sections based on parallel dual-FBG arrays. ASME Transactions on Mechatronics, 25, 406-417(2020).
[20] N J DEATON, M SHEFT, J P DESAI. Towards FBG-based shape sensing and sensor drift for a steerable needle. ASME Transactions on Mechatronics, 28, 3041-3052(2023).
[21] 李天梁, 宋珍珍, 陈发银. 光纤光栅与人工智能融合的形状自感知穿刺针. 光学 精密工程, 31, 160-167(2023).
T L LI, ZH ZH SONG, F Y CHEN et al. Fiber Bragg grating and artificial intelligence fusion for shape self-sensing puncture needle. Opt. Precision Eng., 31, 160-167(2023).
[22] F KHAN, A DENASI, D BARRERA et al. Multi-core optical fibers with Bragg gratings as shape sensor for flexible medical instruments. IEEE Sensors Journal, 19, 5878-5884(2019).
[23] Y LU, B LU, B LI et al. Robust three-dimensional shape sensing for flexible endoscopic surgery using multi-core FBG sensors. IEEE Robotics and Automation Letters, 6, 4835-4842(2021).
[24] C Y SHI, X B LUO, P QI et al. Shape sensing techniques for continuum robots in minimally invasive surgery: a survey. IEEE Transactions on Bio-Medical Engineering, 64, 1665-1678(2017).
[25] H LIU, A FARVARDIN, R GRUPP et al. Shape tracking of a dexterous continuum manipulator utilizing two large deflection shape sensors. IEEE Sensors Journal, 15, 5494-5503(2015).
[26] F KHAN, A DONDER, S GALVAN et al. Pose measurement of flexible medical instruments using fiber Bragg gratings in multi-core fiber. IEEE Sensors Journal, 20, 10955-10962(2020).
[27] O AL-AHMAD, M OURAK, J VAN ROOSBROECK et al. Improved FBG-based shape sensing methods for vascular catheterization treatment. IEEE Robotics and Automation Letters, 1(2020).
[28] Y F CAO, Z F LIU, H L YU et al. Spatial shape sensing of a multisection continuum robot with integrated DTG sensor for maxillary sinus surgery. ASME Transactions on Mechatronics, 28, 715-725(2023).
[29] S SEFATI, C GAO, I IORDACHITA et al. Data-driven shape sensing of a surgical continuum manipulator using an uncalibrated fiber Bragg grating sensor. IEEE Sensors Journal, 21, 3066-3076(2021).
[30] J P MOORE, M D ROGGE. Shape sensing using multi-core fiber optic cable and parametric curve solutions. Optics Express, 20, 2967-2973(2012).
[31] S MANAVI ROODSARI, A HUCK-HORVATH, P C CATTIN. Shape sensing of optical fiber Bragg gratings based on deep learning. Machine Learning: Science and Technology, 4(2023).
[32] T L LI, P A HUANG, S S WANG et al. A six-axis FBG force/moment sensor with nonlinear decoupling and fault tolerance for laparoscopic instruments. IEEE Transactions on Industrial Electronics, 71, 13384-13394(2024).