• Optoelectronics Letters
  • Vol. 17, Issue 12, 705 (2021)
Jiaan GAN, Mengyan SHEN, Xin XIAO, Jinpeng NONG*, and Fu FENG
Author Affiliations
  • Nanophononics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, China
  • show less
    DOI: 10.1007/s11801-021-1126-y Cite this Article
    GAN Jiaan, SHEN Mengyan, XIAO Xin, NONG Jinpeng, FENG Fu. Deep learning enables temperature-robust spectrometer with high resolution[J]. Optoelectronics Letters, 2021, 17(12): 705 Copy Citation Text show less
    References

    [1] KONG S, WIJNGAARDS D, WOLFFENBUTTEL R. Infrared micro-spectrometer based on a diffraction grating[J]. Sensors and actuators A:physical, 2001, 92(1-3):88-95.

    [2] PüGNER T, KNOBBE J, GRüGER H. Near-infrared grating spectrometer for mobile phone applications[J]. Applied spectroscopy, 2016, 70(5):734-745.

    [3] KRAFT M, KENDA A, FRANK A, e t a l . Single-detector micro-electro-mechanical scanning grating spectrometer[J]. Analytical and bioanalytical chemistry, 2006, 386(5):1259-1266.

    [4] FARAJI-DANA M, ARBABI E, ARBABI A, et al. Compact folded metasurface spectrometer[J]. Nature communications, 2018, 9(1):1-8.

    [5] MURRAY M J, REDDING B. Distributed multimode fiber Φ-OTDR sensor using a high-speed camera[J]. OSA continuum, 2021, 4(2):579-588.

    [6] SAN FABIáN N, SOCORRO-LERáNOZ A B, DEL VILLAR I, et al. Multimode-coreless-multimode fiber-based sensors : theoretical and experimental study[J]. Journal of lightwave technology, 2019, 37(15): 3844-3850.

    [7] BRIENTIN A, LEDUC D, GAILLARD V, et al. Numerical and experimental study of a multimode optical fiber sensor based on Fresnel reflection at the fiber tip for refractive index measurement[J]. Optics & laser technology, 2021, 143:107315.

    [8] SUN Y, LIU D, LU P, et al. High sensitivity optical fiber strain sensor using twisted multimode fiber based on SMS structure[J]. Optics communications, 2017, 405:416-420.

    [9] FENG F, CHEN W, CHEN D, et al. In-situ ultrasensitive label-free DNA hybridization detection using optical fiber specklegram[J]. Sensors and actuators B:chemical, 2018, 272:160-165.

    [10] CHEN W, FENG F, CHEN D, et al. Precision non-contact displacement sensor based on the near-field characteristics of fiber specklegrams[J]. Sensors and actuators A:physical, 2019, 296:1-6.

    [11] MENG Z, LI J, YIN C, et al. Multimode fiber spectrometer with scalable bandwidth using space-division multiplexing[J]. AIP advances, 2019, 9(1):015004.

    [12] REDDING B, POPOFF S M, CAO H. All-fiber spectrometer based on speckle pattern reconstruction[J]. Optics express, 2013, 21(5):6584-6600.

    [13] REDDING B, CAO H. Using a multimode fiber as a high-resolution, low-loss spectrometer[J]. Optics letters, 2012, 37(16):3384-3386.

    [14] REDDING B, ALAM M, SEIFERT M, et al. High-resolution and broadband all-fiber spectrometers[J]. Optica, 2014, 1(3):175-180.

    [15] KüRüM U, WIECHA P R, FRENCH R, et al. Deep learning enabled real time speckle recognition and hyperspectral imaging using a multimode fiber array[J]. Optics express, 2019, 27(15):20965-20979.

    [16] RAHMANI B, LOTERIE D, KONSTANTINOU G, et al. Multimode optical fiber transmission with a deep learning network[J]. Light:science & applications, 2018, 7(1):1-11.

    [17] WANG P, DI J. Deep learning-based object classification through multimode fiber via a CNN-architecture SpeckleNet[J]. Applied optics, 2018, 57(28):8258-8263.

    [18] MATJASEC Z, CAMPELJ S, DONLAGIC D. All-optical, thermo-optical path length modulation based on the vanadium-doped fibers[J]. Optics express, 2013, 21:11794-11807.

    [19] HANSEN K, ALKESKJOLD T, BROENG J, et al. Thermo-optical effects in high-power ytterbium-doped fiber amplifiers[J]. Optics express, 2011, 19 : 23965-23980.

    [20] TEZVERGIL A, LASSILA L V J, VALLITTU P K. The effect of fiber orientation on the thermal expansion coefficients of fiber-reinforced composites[J]. Dental materials, 2003, 19(6):471-477.

    [21] PRADERE C, SAUDER C. Transverse and longitudinal coefficient of thermal expansion of carbon fibers at high temperatures (300–2500K)[J]. Carbon, 2008, 46(14): 1874-1884.

    [22] TAKAO Y, TAYA M. The effect of variable fiber aspect ratio on the stiffness and thermal expansion coefficients of a short fiber composite[J]. Journal of composite materials, 1987, 21(2):140-156.

    [23] CHOI H-S, TAYLOR H F, LEE C E. High-performance fiber-optic temperature sensor using low-coherence interferometry[J]. Optics letters, 1997, 22(23) : 1814-1816.

    [24] HE K, ZHANG X, REN S, et al. In deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, Nevada. New York:IEEE, 2016:770-778.

    [25] LI X, YU L, CHANG D, et al. Dual cross-entropy loss for small-sample fine-grained vehicle classification[J]. IEEE transactions on vehicular technology, 2019, 68(5):4204-4212.

    [26] MAATEN L V D, HINTON G E. Visualizing data using t-SNE[J]. Journal of machine learning research, 2008, 9:2579-2605.

    GAN Jiaan, SHEN Mengyan, XIAO Xin, NONG Jinpeng, FENG Fu. Deep learning enables temperature-robust spectrometer with high resolution[J]. Optoelectronics Letters, 2021, 17(12): 705
    Download Citation