• Journal of the Chinese Ceramic Society
  • Vol. 50, Issue 5, 1436 (2022)
WANG Kai1, WANG Xunchun1, QIAN Bin1,2, MA Jusha1, and LU Jianfeng1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    WANG Kai, WANG Xunchun, QIAN Bin, MA Jusha, LU Jianfeng. Recent Development on Space Application for High-Efficiency Solar Cells and Array Technology[J]. Journal of the Chinese Ceramic Society, 2022, 50(5): 1436 Copy Citation Text show less
    References

    [1] ZHANG J, YUAN L M, CHEN S L, et al. A survey on design of reaction spheres and associated speed and orientation measurement technologies[J]. ISA Trans, 2020, 99(4): 417-431.

    [2] JIN S, ZHANG D, FANG Z. High-linearized and fast-convergent Rml look-up table control method for space solar array simulator[J]. CPSS Trans Power Electron Appl, 2020, 5(3): 289-301.

    [3] BARDE H. 1989-2019: Three decades of power systems evolution through the prism of ESPC[C]//Proceedings of European Space Power Conference, France, 2019: 1122-1125.

    [4] LONG J H, WU D Y, LU S L, et al. Failure analysis of thin film four-junction inverted metamorphic solar cells[J]. Prog Photovolt Res Appl, 2021, 29(2): 181-187.

    [5] JEREMY B, STEVE K, MATT L, et al. On-orbit validation of the roll-out solar array[C]//IEEE Aerospace Conference, Montana, USA, 2018: 105-109.

    [6] LAN X, LIU LW, ZHANG F H, et al. World’s first spaceflight on-orbit demonstration of a flexible solar array system based on shape memory polymer composites[J]. Sci China Technol Sc, 2020, 63(8): 1436-1451.

    [7] HOANG B, WHITE S, SPENCE B, et al. Commercialization of deployable space systems’s roll-out solar array (ROSA) technology for space systems loral (SSL) solar arrays[C]//IEEE Aerospace Conference, Montana, USA, 2016: 129-141.

    [8] SURAMPUDI R, BLOSIU J, STELLA P, et al. Solar power technologies for future planetary science missions[R]. NASA/TM101316, Pasadena, NASA, 2017: 29.

    [9] BAILEY S, RAFFAELLE R. Space solar cells and arrays[C]//LUQUE A, HEGEDUS S eds. Handbook of Photovolt Science and Engineering. John Wiley & Sons, Inc, 2011: 365-401.

    [10] YANG Y, FENG S, LI M, et al. Structure, optical absorption, and performance of organic solar cells improved by gold nanoparticles in buffer layers[J]. ACS Appl Mater Interfaces, 2015, 7(44): 24430-24437.

    [11] IMAIZUMI M, NAKAMURA T, TAKAMOTO T, et al. Radiation degradation characteristics of component subcells in inverted metamorphic triple-junction solar cells irradiated with electrons and protons[J]. Prog Photovolt Res Appl, 2017, 25: 161-174.

    [12] TSENG M, HORNG R, TSAI Y, et al. Fabrication and characterization of GaAs solar cells on copper substrates[J]. IEEE Electron Dev Lett, 2009, 30(9): 940-942.

    [13] YAMAGUCHI M, TAKAMOTO T, ARAKI K, et al. Multi-junction Ⅲ-Ⅴ solar cells: Current status and future potential[J]. Sol Energy, 2005, 79(3): 78-85.

    [14] LEE K, ZIMMERMAN J D, XIAO X, et al. Reuse of GaAs substrates for epitaxial life-off by employing protection layers[J]. J Appl Phys, 2012, 111(3): 33-52.

    [15] HENRY W, JULIE A. Space solar array reliability: A study and recommendations[J]. Acta Astronaut, 2008, 63(11): 1233-1238.

    [16] KOVAL N E, DA P F, ARTACHO E. Ab initio electronic stopping power for protons in Ga0.5In0.5P/GaAs/Ge triple-junction solar cells for space applications[J]. Royal Soc Open Sci, 2020, 11(7): 200925.

    [17] PETER C, BRANDON H, SALAH B. Tunnel junctions for Ⅲ-Ⅴ multijunction solar cells review[J]. Crystals, 2018, 12(8): 445-460.

    [19] BAUHUIS G J, MULDER P, SCHERMER J J. Ultra-thin, high performance tunnel junctions for III-V multijunction cells[J]. Prog Photovolt Res Appl, 2014, 22: 656-660.

    [20] GEISZ J F, KURTZ S, WANLASS M W, et al. High-efficiency GaInP/GaAs/InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction[J]. Appl Phys Lett, 2007, 91(36): 23-52.

    [21] KING R, BOISVRT J, REHDER E, et al. High efficiency inverted metamorphic (IMM) solar cells[C]//IEEE 39th Photovoltaic Specialists Conference, Florida, USA, 2013: 791-815.

    [22] SAMBERG J P, ZACHARY C C, BRADSHAW G K, et al. Effect of GaAs interfacial layer on the performance of high bandgap tunnel junctions for multijunction solar cells[J]. Appl Phys Lett, 2013, 103(10): 103503.

    [24] BEDAIR S M, HARMON J L, CARLIN C Z, et al. High performance as-grown and annealed high band gap tunnel junctions: Te behavior at the interface[J]. Appl Phys Lett, 2016, 108(20): 203903.

    [25] LACKNER D, SCHON J, LANG R, et al. Radiation hard four-junction space solar cell based on GaInAsP alloys[C]//European Space Power Conference, Juan-les-pins, France, 2019: 1122-1125.

    [26] WOJTCZUK S, CHIU P, ZHANG X, et al. InGaP/GaAs/InGaAs 41% concentrator cells using bi-facial epigrowth[C]//35th IEEE Photovoltaic Specialists Conference, Honolulu, USA, 2010: 1259-1264.

    [27] TAKAMOTO T, KANEIWA M, IMAIZUM M, et al. InGaP/ GaAs-based multijunction solar cells[J]. Prog Photovolt, 2005, 13(6): 495-511.

    [28] GEISZ J F, STEINER M A, JAIN N, et al. Building a six-junction inverted metamorphic concentrator solar cell[J]. IEEE J Photovolt, 2018, 8(2): 626-632.

    [29] AEBERHARD U. Theoretical investigation of direct and phonon-assisted tunneling currents in InAlGaAs/InGaAs bulk and quantum-well interband tunnel junctions for multijunction solar cells[J]. Phys Rev B Condens Matter Mater Phys, 2013, 87(8): 081302.

    [30] BAUHUIS G J, MULDER P, SCHERMER J J. Ultra-thin, high performance tunnel junctions for III-V multijunction cells Prog[J]. Prog Photovolt, 2012, 22(6): 656-660.

    [31] GALL S N, BARREAU S, KESSLER J, et al. Material analysis of PVD-grown indium sulphide buffer layers for Cu(In, Ga)Se2-based solar cells[J]. Thin Solid Films, 2005, 480: 138-141.

    [34] TU Y G, XU G N, YANG X Y, et al. Mixed-cation perovskite solar cells in space[J]. Sci China-Phys Mech Astron, 2019, 62(7): 974221.

    [35] SITES J, GLOECKLER M. Apparent quantum efficiency effects in CdTe solar cells[J]. J Appl Phys, 2004, 95(8): 4438-4445.

    [36] MIYAZAWA Y, IKEGAMI M, CHEN H W, et al. Tolerance of perovskite solar cell to high-energy particle irradiations in space environment[J]. Iscience, 2018, 2: 148-155.

    [37] KATSUAKI T, KATSUYUKI W, YASUHIKO A, et al. Flexible thin-film InAs/GaAs quantum dot solar cells[J]. Appl Phys Lett, 2012, 100(25): 192-202.

    [38] TAKAMOTO T, KANEIWA M, IMAIZUMI M, et al. InGaP/GaAs-based multijunction solar cells[J]. Progr Photovolt Res Appl, 2005, 13(6): 495-511.

    [39] LEE K, ZIMMERMAN J D, XIAO X, et al. Reuse of GaAs substrates for epitaxial life-off by employing protection layers[J]. J Appl Phys, 2012, 111(3): 33-52.

    [41] SASAKI K, AGUI T, NAKAIDO K, et al. Development of InGaP/GaAs/InGaAs inverted triple junction concentrator solar cells[J]. AIP Conf Proc, 2013, 1556(22): 22-25.

    [42] SUN K W, ZHU M, LIU Q. Membrane material-based rigid solar array design and thermal simulation for stratospheric airships[J]. Adv Mater Sci Eng, 2014(6): 1-7.

    [43] PHILIPPE R. Survey of aerodynamics and aerothermodynamics effects carried out in the frame of mars exploration projects[J]. Prog Aerosp Sci, 2014(70): 1-27.

    [44] EDMONDSON K, JOSLIN D, FETZER C, et al. Simulation of Mars surface solar spectrum of optimized performance of triple-junction solar cells[R]. NASA/CP-214494, California: NASA, 2007: 12.

    [45] CALLE C I, MANTOVANI J G, BUHLER C R, et al. Embedded electro-static sensors for Mars exploration missions[J]. J Electrostat, 2004, 61(3): 245-257.

    [46] O’NEILL M J, HOWELL J, LOLLAR L, et al. Stretched lens array squarerigger (SLASR): A unique high-power solar for exploration missions[J]. Acta Astronaut, 2006, 59(1-5): 157-165.

    [47] TIBERT G. Deployable tensegrity structures for space applications[R]. Stockholm, Royal Institute of Technology, 2002: 179-201.

    [48] PUIG L, BARTON A, RANDO N, et al. A review on large deployable structures for astrophysics missions[J]. Acta Astronaut, 2010, 67(1): 12-26.

    [49] TRAUT T A, WHILE S T. ST8 UltraFlex-175 solar array deployed dynamics analytical modeling and comparison to validation criteria[R]. AIAA 2010-1498. Washington D C: AIAA, 2010: 28.

    [50] DWAYNE L E, STEVE W. ST8 validation experiment: Ultraflex-175 solar array technology advance: Deployment kinematics and deployed dynamics ground testing and model validation[R]. AIAA 2010-1497. Washington D.C: AIAA, 2010: 37.

    [51] SPENCE B, WHITE S, WILDER N, et al. Next generation UltraFlex solar array for NASA’s new millenium program Space Technology[C]// IEEE Aerospace Conference, Montana, USA, 2005: 149-162.

    [52] ARAKI K, HERRERO R, ANTON I, et al. Why are acceptance angle of Pm and Isc different in spite of uniform illumination onto concentrator solar cells[C]//44th Photovoltaic Specialist Conference, Washington D.C, NASA, 2017: 105-109.

    WANG Kai, WANG Xunchun, QIAN Bin, MA Jusha, LU Jianfeng. Recent Development on Space Application for High-Efficiency Solar Cells and Array Technology[J]. Journal of the Chinese Ceramic Society, 2022, 50(5): 1436
    Download Citation