• NUCLEAR TECHNIQUES
  • Vol. 45, Issue 10, 100604 (2022)
Meiyue YAN1、2, Liangming PAN1、2、*, Zaiyong MA1、2, Xiang LI1、2, and Lingfeng WAN1、2
Author Affiliations
  • 1Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
  • 2Department of Nuclear Engineering and Technology, Chongqing University, Chongqing 400044, China
  • show less
    DOI: 10.11889/j.0253-3219.2022.hjs.45.100604 Cite this Article
    Meiyue YAN, Liangming PAN, Zaiyong MA, Xiang LI, Lingfeng WAN. A new CHF mechanism model for a narrow rectangular channel based on bubble dynamics characteristics[J]. NUCLEAR TECHNIQUES, 2022, 45(10): 100604 Copy Citation Text show less
    References

    [1] PAN Liangming[M]. Thermal hydraulic fundamentals of nuclear reactors, 97-111(2020).

    [2] Ishii M, Hibiki T. Two-fluid model[M]. Thermo-Fluid Dynamics of Two-Phase Flow, 155-216(2010).

    [3] Liu P, Guo Y S, Ding W L et al. Critical heat flux (CHF) correlations for subcooled water flow boiling at high pressure and high heat flux[J]. Journal of Thermal Science, 30, 279-293(2021).

    [4] Song J H, Jung J Y, Chang S H et al. Mechanistic CHF model development for subcooled flow boiling in a vertical rectangular channel under low pressure[J]. International Journal of Heat and Mass Transfer, 174, 121328(2021).

    [5] Yang B W, Han B, Liu A G et al. Recent challenges in subchannel thermal-hydraulics-CFD modeling, subchannel analysis, CHF experiments, and CHF prediction[J]. Nuclear Engineering and Design, 354, 110236(2019).

    [6] Tong L S. Boundary-layer analysis of the flow boiling crisis[J]. International Journal of Heat and Mass Transfer, 11, 1208-1211(1968).

    [7] Weisman J, Pei B S. Prediction of critical heat flux in flow boiling at low qualities[J]. International Journal of Heat and Mass Transfer, 26, 1463-1477(1983).

    [8] Katto Y. Prediction of critical heat flux of subcooled flow boiling in round tubes[J]. International Journal of Heat and Mass Transfer, 33, 1921-1928(1990).

    [9] Galloway J E, Mudawar I. CHF mechanism in flow boiling from a short heated wall-II. Theoretical CHF model[J]. International Journal of Heat and Mass Transfer, 36, 2527-2540(1993).

    [10] Bruder M, Bloch G, Sattelmayer T. Critical heat flux in flow boiling-review of the current understanding and experimental approaches[J]. Heat Transfer Engineering, 38, 347-360(2017).

    [11] Le Corre J M, Yao S C, Amon C H. Two-phase flow regimes and mechanisms of critical heat flux under subcooled flow boiling conditions[J]. Nuclear Engineering and Design, 240, 245-251(2010).

    [12] Bricard B, Peturaud P, Delhaye J M. Understanding and modelling DNB in forced convective boiling: modelling of a mechanism based on nucleation site dryout[J]. Multiphase Science and Technology, 9, 329-379(1997).

    [13] Ha S J, No H C. A dry-spot model of critical heat flux applicable to both pool boiling and subcooled forced convection boiling[J]. International Journal of Heat and Mass Transfer, 43, 241-250(2000).

    [14] Zhao Y H, Masuoka T, Tsuruta T. Unified theoretical prediction of fully developed nucleate boiling and critical heat flux based on a dynamic microlayer model[J]. International Journal of Heat and Mass Transfer, 45, 3189-3197(2002).

    [15] Luitjens J, Wu Q, Greenwood S et al. Mechanistic CHF modeling for natural circulation applications in SMR[J]. Nuclear Engineering and Design, 310, 604-611(2016).

    [16] Ding W, Geißler T, Krepper E et al. Critical heat flux as a mass flux dependent local or global phenomenon: theoretical analysis and experimental confirmation[J]. International Journal of Thermal Sciences, 130, 200-207(2018).

    [17] Kaminaga M, Yamamoto K, Sudo Y. Improvement of critical heat flux correlation for research reactors using plate-type fuel[J]. Journal of Nuclear Science and Technology, 35, 943-951(1998).

    [18] Chen D Q, Pan L M, Yuan D W et al. Dual model of bubble growth in vertical rectangular narrow channel[J]. International Communications in Heat and Mass Transfer, 37, 1004-1007(2010).

    [19] XU Jianjun, CHEN Bingde, WANG Xiaojun. Study on bubble growth and departure near wall in vertical narrow rectangular channel[J]. Atomic Energy Science and Technology, 44, 1349-1354(2010).

    [20] Okawa T, Ishida T, Kataoka I et al. An experimental study on bubble rise path after the departure from a nucleation site in vertical upflow boiling[J]. Experimental Thermal and Fluid Science, 29, 287-294(2005).

    [21] Okawa T, Ishida T, Kataoka I et al. Bubble rise characteristics after the departure from a nucleation site in vertical upflow boiling of subcooled water[J]. Nuclear Engineering and Design, 235, 1149-1161(2005).

    [22] YAN Meiyue. Experimental study of wall heat flux partitioning model in vertical rectangular narrow channel[D](2019).

    [23] Xu J J, Chen B D, Huang Y P et al. Experimental visualization of sliding bubble dynamics in a vertical narrow rectangular channel[J]. Nuclear Engineering and Design, 261, 156-164(2013).

    [24] LI Shaodan. Study of local bubble behavior and boiling heat transfer characteristics under ocean condition[D](2015).

    [25] Le Corre J M, Yao S C, Amon C H. A mechanistic model of critical heat flux under subcooled flow boiling conditions for application to one- and three-dimensional computer codes[J]. Nuclear Engineering and Design, 240, 235-244(2010).

    [26] Ding W, Krepper E, Hampel U. Quantitative prediction of critical heat flux initiation in pool and flow boiling[J]. International Journal of Thermal Sciences, 125, 121-131(2018).

    [27] Sudo Y, Kaminaga M. A CHF characteristic for downward flow in a narrow vertical rectangular channel heated from both sides[J]. International Journal of Multiphase Flow, 15, 755-766(1989).

    [28] Sudo Y. Study on critical heat flux in rectangular channels heated from one or both sides at pressures ranging from 0.1 to 14 MPa[J]. Journal of Heat Transfer, 118, 680-688(1996).

    [29] Yan M Y, Yang Y Y, Ren T T et al. Characteristics of sliding bubbles in subcooled flow boiling in a narrow rectangular channel under natural circulation condition[J]. International Journal of Heat and Mass Transfer, 144, 118587(2019).

    [30] Yan M Y, Ren T T, Chen K L et al. Visualized experiment of bubble behaviors in a vertical narrow rectangular channel under natural circulation condition[J]. Frontiers in Energy Research, 6, 105(2018).

    [31] del Valle V H, Kenning D B R. Subcooled flow boiling at high heat flux[J]. International Journal of Heat and Mass Transfer, 28, 1907-1920(1985).

    [32] Gnielinski V. New equations for heat and mass transfer in the turbulent flow in pipes and channels[R]. NASA STI/recon Technical Report A(1975).

    [33] Zeitoun O, Shoukri M. Bubble behavior and Mean diameter in subcooled flow boiling[J]. Journal of Heat Transfer, 118, 110-116(1996).

    Meiyue YAN, Liangming PAN, Zaiyong MA, Xiang LI, Lingfeng WAN. A new CHF mechanism model for a narrow rectangular channel based on bubble dynamics characteristics[J]. NUCLEAR TECHNIQUES, 2022, 45(10): 100604
    Download Citation