• Chinese Journal of Lasers
  • Vol. 50, Issue 20, 2002302 (2023)
Chenghong Duan, Dazhi Shang, Xiangpeng Luo*, Hanlin Chi, Xiankun Cao, and Xiaojie Hao
Author Affiliations
  • College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • show less
    DOI: 10.3788/CJL230601 Cite this Article Set citation alerts
    Chenghong Duan, Dazhi Shang, Xiangpeng Luo, Hanlin Chi, Xiankun Cao, Xiaojie Hao. Effects of Residual Stress on Fatigue Crack Propagation Rate of Directed Energy Deposited Stainless Steel Parts[J]. Chinese Journal of Lasers, 2023, 50(20): 2002302 Copy Citation Text show less
    References

    [1] Cao T F. Research on pulsed eddy current testing technology for austenitic stainless steel pressure equipment[D], 36-40(2019).

    [2] Jiang H Z, Fang J H Y, Chen Q S et al. Research status of process, microstructure and mechanical properties of laser selective melting forming 316L stainless steel: process, microstructure, and mechanical properties[J]. Chinese Journal of Lasers, 49, 1402804(2022).

    [3] Li H, Zhao W J, Li R D et al. Progress on additive manufacturing of maraging steel[J]. Chinese Journal of Lasers, 49, 1402102(2022).

    [4] Yu M J, Wu C M, Feng A X et al. Microstructure and mechanical properties of 316L-IN625 gradient material prepared via laser deposition[J]. Chinese Journal of Lasers, 49, 0802007(2022).

    [5] Smudde C M, San Marchi C W, Hill M R et al. Effects of residual stress on orientation dependent fatigue crack growth rates in additively manufactured stainless steel[J]. International Journal of Fatigue, 169, 107489(2023).

    [6] Smudde C M, D'Elia C R, San Marchi C W et al. The influence of residual stress on fatigue crack growth rates of additively manufactured Type 304L stainless steel[J]. International Journal of Fatigue, 162, 106954(2022).

    [7] Keller S, Klusemann B. Application of stress intensity factor superposition in residual stress fields considering crack closure[J]. Engineering Fracture Mechanics, 243, 107415(2021).

    [8] Nong X D. Investigation of microstructure and mechanical properties of 15-5PH stainless steel produced by additive manufacturing[D], 68-78(2021).

    [9] Syed A K, Ahmad B, Guo H et al. An experimental study of residual stress and direction-dependence of fatigue crack growth behaviour in as-built and stress-relieved selective-laser-melted Ti6Al4V[J]. Materials Science and Engineering: A, 755, 246-257(2019).

    [10] Pegues J W, Roach M D, Shamsaei N. Effects of postprocess thermal treatments on static and cyclic deformation behavior of additively manufactured austenitic stainless steel[J]. JOM, 72, 1355-1365(2020).

    [11] Shubert M, Pandheeradi M. An Abaqus extension for 3-D welding simulations[J]. Materials Science Forum, 768/769, 690-696(2013).

    [12] Cao X K, Luo X P, Duan C H. Research on fast distortion prediction of industrial-scale parts fabricated by additive manufacturing[J]. Applied Laser, 41, 575-582(2021).

    [13] Chen H, Xue H, Sun J W et al. SCC crack propagation characteristics under residual stress field based on XFEM[J]. Hot Working Technology, 46, 162-166(2017).

    [14] Zhang H, Dai D H, Shi X Y et al. Thermal behavior of 316L/Inconel 718 multi-material molten pool deposited by laser direct energy[J]. Chinese Journal of Lasers, 49, 1402208(2022).

    [15] Jacob A, Mehmanparast A, D’Urzo R et al. Experimental and numerical investigation of residual stress effects on fatigue crack growth behaviour of S355 steel weldments[J]. International Journal of Fatigue, 128, 105196(2019).

    [16] Mishurova T, Artzt K, Haubrich J et al. New aspects about the search for the most relevant parameters optimizing SLM materials[J]. Additive Manufacturing, 25, 325-334(2019).

    [17] Fan P, Pan J T, Ge Y M et al. Finite element analysis of residual stress in TC4/TC11 titanium alloy gradient material produced by laser additive manufacturing[J]. Chinese Journal of Lasers, 48, 1802012(2021).

    [18] Sun L Y, Liu C C, Jiang M S et al. Fatigue crack prediction method for aluminum alloy based on fiber Bragg grating array[J]. Chinese Journal of Lasers, 48, 1306003(2021).

    [19] Oh G. Effective stress and fatigue life prediction with mean stress correction models on a ferritic stainless steel sheet[J]. International Journal of Fatigue, 157, 106707(2022).

    Chenghong Duan, Dazhi Shang, Xiangpeng Luo, Hanlin Chi, Xiankun Cao, Xiaojie Hao. Effects of Residual Stress on Fatigue Crack Propagation Rate of Directed Energy Deposited Stainless Steel Parts[J]. Chinese Journal of Lasers, 2023, 50(20): 2002302
    Download Citation