• Chinese Optics Letters
  • Vol. 21, Issue 2, 021403 (2023)
Pixian Jin1、2, Yi Cui1, Jing Su1、2, Huadong Lu1、2、*, and Kunchi Peng1、2
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • show less
    DOI: 10.3788/COL202321.021403 Cite this Article Set citation alerts
    Pixian Jin, Yi Cui, Jing Su, Huadong Lu, Kunchi Peng. Continuously tunable CW single-frequency Nd:YAP/LBO laser with dual-wavelength output[J]. Chinese Optics Letters, 2023, 21(2): 021403 Copy Citation Text show less
    References

    [1] Y. J. Wang, Y. H. Tian, X. C. Sun, L. Tian, Y. H. Zheng. Noise transfer of pump field noise with analysis frequency in a broadband parametric downconversion process. Chin. Opt. Lett., 19, 052703(2021).

    [2] V. M. Garmash, G. A. Ermakov, N. I. Pavlova, A. V. Tarasov. Efficient second harmonic generation in potassium titanate phosphate crystals with noncritical matching. Sov. Tech. Phys. Lett., 12, 505(1986).

    [3] P. D. Drummond, M. D. Reid. Correlations in nondegenerate parametric oscillation. II. Below threshold results. Phys. Rev. A, 41, 3930(1990).

    [4] Z. Y. Ou, S. F. Pereira, H. J. Kimble, K. C. Peng. Realization of the Einstein Podolsky Rosen paradox for continuous variables. Phys. Rev. Lett., 68, 3663(1992).

    [5] Y. Zhang, H. Wang, X. Y. Li, J. T. Jing, C. D. Xie, K. C. Peng. Experimental generation of bright two-mode quadrature squeezed light from a narrow-band nondegenerate optical parametric amplifier. Phys. Rev. A, 62, 023813(1999).

    [6] X. L. Su, A. H. Tan, X. J. Jia, J. Zhang, C. D. Xie, K. C. Peng. Experimental preparation of quadripartite cluster and Greenberger–Horne–Zeilinger entangled states for continuous variables. Phys. Rev. Lett., 98, 070502(2007).

    [7] J. Yu, Y. Qin, Z. H. Yan, H. D. Lu, X. J. Jia. Improvement of the intensity noise and frequency stabilization of Nd:YAP laser with an ultra-low expansion Fabry-Perot cavity. Opt. Express, 27, 3247(2019).

    [8] L. D. Schearer, P. Tin. Tunable lasers at 1080 nm for helium optical pumping. J. Appl. Phys., 68, 943(1990).

    [9] W. G. Rellergert, S. B. Cahn, A. Garvan, J. C. Hanson, W. H. Lippincott, J. A. Nikkel, D. N. McKinsey. Detection and imaging of He2 molecules in superfluid helium. Phys. Rev. Lett., 100, 025301(2008).

    [10] Y. L. Tian, P. F. Yang, W. Wu, S. K. Li, G. Li, P. F. Zhang, T. C. Zhang. Precision measurement of cesium 6S–7S two-photon spectra with single trapped atoms. Jpn. J. Appl. Phys., 58, 042002(2019).

    [11] H. Q. Yang, P. X. Jin, J. Su, X. D. Xu, J. Xu, H. D. Lu. Realization of a continuous-wave single-frequency tunable Nd:CYA laser. Chin. Opt. Lett., 20, 031403(2022).

    [12] X. Wang, T. Riesbeck, H. J. Eichler. Tunable single frequency microchip Nd:YAP MOPA laser operating at 1.08 µm. Laser Phys., 23, 045804(2013).

    [13] Y. J. Wang, Y. H. Zheng, C. D. Xie, K. C. Peng. High-power low-noise Nd:YAP/LBO laser with dual wavelength outputs. IEEE J. Quantum Electron., 47, 1006(2011).

    [14] Y. S. Zhang, J. Y. Zou, W. X. Zheng, K. Feng, B. Xu, Z. F. Yu. Watt-level continuous-wave intracavity frequency-doubled Pr:YLF-LBO laser at 320 nm. Chin. Opt. Lett., 19, 091406(2021).

    [15] K. I. Martin, W. A. Clarkson, D. C. Hanna. Self-suppression of axial mode hopping by intracavity second-harmonic generation. Opt. Lett., 22, 375(1997).

    [16] H. D. Lu, K. C. Peng. Realization of the single-frequency and high power as well as frequency-tuning of the laser by manipulating the nonlinear loss. J. Quantum Opt., 21, 171(2015).

    [17] F. A. Camargo, T. Zanon-Willette, T. Badr, N. U. Wetter, J.-J. Zondy. Tunable single-frequency Nd:YVO4/BiB3O6 ring laser at 671 nm. IEEE J. Quantum Electron., 46, 804(2010).

    [18] D. Radnatarov, S. Kobtsev, S. Khripunov, V. Lunin. 240-GHz continuously frequency-tuneable/LBO laser with two intra-cavity locked etalons. Opt. Express, 23, 27322(2015).

    [19] P. X. Jin, H. D. Lu, Y. X. Wei, J. Su, K. C. Peng. Single-frequency CW Ti:sapphire laser with intensity noise manipulation and continuous frequency-tuning. Opt. Lett., 42, 143(2017).

    [20] F. Q. Li, B. Zhao, J. Wei, P. X. Jin, H. D. Lu, K. C. Peng. Continuously tunable single-frequency 455 nm blue laser for high-state excitation transition of cesium. Opt. Lett., 44, 3785(2019).

    [21] W. R. Leeb. Losses introduced by tilting intracavity etalons. Appl. Phys., 6, 267(1975).

    [22] P. X. Jin, H. D. Lu, Q. W. Yin, J. Su, K. C. Peng. Expanding continuous tuning range of a CW single-frequency laser by combining an intracavity etalon with a nonlinear loss. IEEE J. Sel. Top. Quantum Electron., 24, 1600505(2018).

    Data from CrossRef

    [1] Pixian Jin, Jiao Wei?, Jing Su?, Huadong Lu, Kunchi Peng?. Recent progress in continuously tunable low-noise all-solid-state single-frequency continuous-wave laser based on intracavity locked etalon. Frontiers in Physics, 10, 1029336(2022).

    Pixian Jin, Yi Cui, Jing Su, Huadong Lu, Kunchi Peng. Continuously tunable CW single-frequency Nd:YAP/LBO laser with dual-wavelength output[J]. Chinese Optics Letters, 2023, 21(2): 021403
    Download Citation