[1] HAGEN N A, KUDENOV M W. Review of snapshot spectral imaging technologies[C]. Optical Engineering, 2013, 52(9): 090901.
HAGEN N A, KUDENOV M W. Review of snapshot spectral imaging technologies[C]. Optical Engineering, 2013, 52(9): 090901.
[2] GAO L, WANG L V. A review of snapshot multidimensional optical imaging: Measuring photon tags in parallel[J]. Physics Reports, 2016, 616: 1-37.
GAO L, WANG L V. A review of snapshot multidimensional optical imaging: Measuring photon tags in parallel[J]. Physics Reports, 2016, 616: 1-37.
[8] BOWEN I S. The image-slicer a device for reducing loss of light at slit of stellar spectrograph[J]. The Astrophysical Journal Letters, 1938, 88: 113.
BOWEN I S. The image-slicer a device for reducing loss of light at slit of stellar spectrograph[J]. The Astrophysical Journal Letters, 1938, 88: 113.
[11] GAO L, KESTER R T, HAGEN N, et al.. Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy[J]. Optics Express, 2010, 18 (14): 14330-14344.
GAO L, KESTER R T, HAGEN N, et al.. Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy[J]. Optics Express, 2010, 18 (14): 14330-14344.
[12] GEELEN B, TACK N, LAMBRECHTS A. A compact snapshot multispectral imager with a monolithically integrated per-pixel filter mosaic[C]. Proc SPIE 8974, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics VII, San Francisco, California, USA, 2014, 8974: 89740L.
GEELEN B, TACK N, LAMBRECHTS A. A compact snapshot multispectral imager with a monolithically integrated per-pixel filter mosaic[C]. Proc SPIE 8974, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics VII, San Francisco, California, USA, 2014, 8974: 89740L.
[13] HORSTMEYER R, EULISS G, ATHALE R, et al.. Flexible multimodal camera using a light field architecture[C]. 2009 IEEE International Conference on Computational Photography (ICCP), 16-17 April 2009, San Francisco, CA, USA. IEEE, 2009: 1-8.
HORSTMEYER R, EULISS G, ATHALE R, et al.. Flexible multimodal camera using a light field architecture[C]. 2009 IEEE International Conference on Computational Photography (ICCP), 16-17 April 2009, San Francisco, CA, USA. IEEE, 2009: 1-8.
[14] HORSTMEYER R, ATHALE R A, EULISS G W. Modified light field architecture for reconfigurable multimode imaging[J]. Proceedings of SPIE, 2009, 7468: 746804.
HORSTMEYER R, ATHALE R A, EULISS G W. Modified light field architecture for reconfigurable multimode imaging[J]. Proceedings of SPIE, 2009, 7468: 746804.
[15] GEHM M E, JOHN R, BRADY D J, et al.. Single-shot compressive spectral imaging with a dual-disperser architecture[J]. Optics Express, 2007, 15(21): 14013-14027.
GEHM M E, JOHN R, BRADY D J, et al.. Single-shot compressive spectral imaging with a dual-disperser architecture[J]. Optics Express, 2007, 15(21): 14013-14027.
[16] SHOGENJI R, KITAMURA Y, YAMADA K, et al.. Multispectral imaging using compact compound optics[J]. Optics Express, 2004, 12(8): 1643-1655.
SHOGENJI R, KITAMURA Y, YAMADA K, et al.. Multispectral imaging using compact compound optics[J]. Optics Express, 2004, 12(8): 1643-1655.
[17] GEELEN B, JAYAPALA M, TACK N, et al.. Low-complexity image processing for a high-throughput low-latency snapshot multispectral imager with integrated tiled filters[ C]. SPIE Defense, Security, and Sensing. Proc SPIE 8743, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIX, Baltimore, Maryland, USA, 2013, 8743: 87431E.
GEELEN B, JAYAPALA M, TACK N, et al.. Low-complexity image processing for a high-throughput low-latency snapshot multispectral imager with integrated tiled filters[ C]. SPIE Defense, Security, and Sensing. Proc SPIE 8743, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIX, Baltimore, Maryland, USA, 2013, 8743: 87431E.
[18] HUBOLD M, BERLICH R, GASSNER C, et al.. Ultra-compact micro-optical system for multispectral imaging[C]. Proc SPIE 10545, MOEMS and Miniaturized Systems XVII, San Francisco, California, USA, 2018, 1054: 105450V.
HUBOLD M, BERLICH R, GASSNER C, et al.. Ultra-compact micro-optical system for multispectral imaging[C]. Proc SPIE 10545, MOEMS and Miniaturized Systems XVII, San Francisco, California, USA, 2018, 1054: 105450V.
[19] MU T K, HAN F, BAO D H, et al.. Compact snapshot optically replicating and remapping imaging spectrometer (ORRIS) using a focal plane continuous variable filter[J] . Optics Letters, 2019, 44(5): 1281-1284.
MU T K, HAN F, BAO D H, et al.. Compact snapshot optically replicating and remapping imaging spectrometer (ORRIS) using a focal plane continuous variable filter[J] . Optics Letters, 2019, 44(5): 1281-1284.
[20] KUDENOV M W, DERENIAK E L. Compact real-time birefringent imaging spectrometer[J]. Optics Express, 2012, 20(16): 17973-17986.
KUDENOV M W, DERENIAK E L. Compact real-time birefringent imaging spectrometer[J]. Optics Express, 2012, 20(16): 17973-17986.
[21] HAGEN N, DERENIAK E L. Analysis of computed tomographic imaging spectrometers I Spatial and spectral resolution[J]. Applied Optics, 2008, 47(28): F85.
HAGEN N, DERENIAK E L. Analysis of computed tomographic imaging spectrometers I Spatial and spectral resolution[J]. Applied Optics, 2008, 47(28): F85.
[22] STOFFELS J, BLUEKENS A A J, PETRUS JACOBUS M P. Color splitting prism assembly: US4084180[P\]. 1978-04-11.
STOFFELS J, BLUEKENS A A J, PETRUS JACOBUS M P. Color splitting prism assembly: US4084180[P\]. 1978-04-11.
[23] MURAKAMI Y, YAMAGUCHI M, OHYAMA N. Hybrid-resolution multispectral imaging using color filter array[J]. Optics Express, 2012, 20(7): 7173-7183.
MURAKAMI Y, YAMAGUCHI M, OHYAMA N. Hybrid-resolution multispectral imaging using color filter array[J]. Optics Express, 2012, 20(7): 7173-7183.
[24] HEADLAND S E, JONES H R, D′SA A S V, et al.. Cutting-edge analysis of extracellular microparticles using ImageStreamX imaging flow cytometry[J]. Scientific Reports, 2015, 4: 5237.
HEADLAND S E, JONES H R, D′SA A S V, et al.. Cutting-edge analysis of extracellular microparticles using ImageStreamX imaging flow cytometry[J]. Scientific Reports, 2015, 4: 5237.
[25] GORMAN A, FLETCHERHOLMES D W, HARVEY A R. Generalization of the Lyot filter and its application to snapshot spectral imaging[J]. Optics Express, 2010, 18(6): 5602 -5608.
GORMAN A, FLETCHERHOLMES D W, HARVEY A R. Generalization of the Lyot filter and its application to snapshot spectral imaging[J]. Optics Express, 2010, 18(6): 5602 -5608.
[26] KUDENOV M W, JUNGWIRTH M E L, DERENIAK E L, et al.. White-light Sagnac interferometer for snapshot multispectral imaging[J]. Applied Optics, 2010, 49(21): 4067- 4076.
KUDENOV M W, JUNGWIRTH M E L, DERENIAK E L, et al.. White-light Sagnac interferometer for snapshot multispectral imaging[J]. Applied Optics, 2010, 49(21): 4067- 4076.
[27] CONTENT R, BLAKE S, DUNLOP C, et al.. New microslice technology for hyperspectral imaging[J]. Remote Sensing, 2013, 5(3): 1204-1219.
CONTENT R, BLAKE S, DUNLOP C, et al.. New microslice technology for hyperspectral imaging[J]. Remote Sensing, 2013, 5(3): 1204-1219.
[28] GAT N, SCRIVEN G, GARMAN J, et al.. Development of four-dimensional imaging spectrometers (4D-IS)[C]. SPIE Optics + Photonics. Proc SPIE 6302, Imaging Spectrometry XI, San Diego, California, USA, 2006, 6302: 63020M.
GAT N, SCRIVEN G, GARMAN J, et al.. Development of four-dimensional imaging spectrometers (4D-IS)[C]. SPIE Optics + Photonics. Proc SPIE 6302, Imaging Spectrometry XI, San Diego, California, USA, 2006, 6302: 63020M.
[29] KRIESEL J, SCRIVEN G, GAT N, et al.. Snapshot hyperspectral fovea vision system (HyperVideo)[C]. SPIE Defense, Security, and Sensing. Proc SPIE 8390, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII, Baltimore, Maryland, USA, 2012, 8390: 83900T.
KRIESEL J, SCRIVEN G, GAT N, et al.. Snapshot hyperspectral fovea vision system (HyperVideo)[C]. SPIE Defense, Security, and Sensing. Proc SPIE 8390, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII, Baltimore, Maryland, USA, 2012, 8390: 83900T.
[30] DWIGHT J G, TKACZYK T S. Lenslet array tunable snapshot imaging spectrometer (LATIS) for hyperspectral fluorescence microscopy[J]. Biomedical Optics Express, 2017, 8(3): 1950-1964.
DWIGHT J G, TKACZYK T S. Lenslet array tunable snapshot imaging spectrometer (LATIS) for hyperspectral fluorescence microscopy[J]. Biomedical Optics Express, 2017, 8(3): 1950-1964.
[31] BODKIN, SHEINIS A, NORTON A, et al.. Snapshot hyperspectral imaging-the hyperpixel array camera [J]. Proceedings of SPIE, 2009: 7334.
BODKIN, SHEINIS A, NORTON A, et al.. Snapshot hyperspectral imaging-the hyperpixel array camera [J]. Proceedings of SPIE, 2009: 7334.
[32] CAO X, DU H, TONG X, et al.. A prism-mask system for multispectral video acquisition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 (12): 2423-2435.
CAO X, DU H, TONG X, et al.. A prism-mask system for multispectral video acquisition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 (12): 2423-2435.
[33] CAO X, DU H, TONG X, et al.. A prism-mask system for multispectral video acquisition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 (12): 2423-2435.
CAO X, DU H, TONG X, et al.. A prism-mask system for multispectral video acquisition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 (12): 2423-2435.
[34] WAGADARIKAR A, JOHN R, WILLETT R, et al.. Single disperser design for coded aperture snapshot spectral imaging[J]. Applied Optics, 2008, 47(10): B44.
WAGADARIKAR A, JOHN R, WILLETT R, et al.. Single disperser design for coded aperture snapshot spectral imaging[J]. Applied Optics, 2008, 47(10): B44.
[35] WAGADARIKAR A A, PITSIANIS N P, SUN X B, et al.. Video rate spectral imaging using a coded aperture snapshot spectral imager[J]. Optics Express, 2009, 17(8): 6368 -6388.
WAGADARIKAR A A, PITSIANIS N P, SUN X B, et al.. Video rate spectral imaging using a coded aperture snapshot spectral imager[J]. Optics Express, 2009, 17(8): 6368 -6388.
[36] FIGUEIREDO M A T, NOWAK R D, WRIGHT S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597.
FIGUEIREDO M A T, NOWAK R D, WRIGHT S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597.
[37] BIOUCAS-DIAS J M, FIGUEIREDO M A T. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE Transactions on Image Processing, 2007, 16(12): 2992-3004.
BIOUCAS-DIAS J M, FIGUEIREDO M A T. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE Transactions on Image Processing, 2007, 16(12): 2992-3004.
[38] WAGADARIKARA A A, PITSIANISABC N P, SUN X B, et al.. Spectral image estimation for coded aperture snapshot spectral imagers[J]. Proceedings of SPIE - the International Society for Optical Engineering, 2008: 7076(36): 6824-6833.
WAGADARIKARA A A, PITSIANISABC N P, SUN X B, et al.. Spectral image estimation for coded aperture snapshot spectral imagers[J]. Proceedings of SPIE - the International Society for Optical Engineering, 2008: 7076(36): 6824-6833.
[39] ARGUELLO H, RUEDA H, WU Y H, et al.. Higher-order computational model for coded aperture spectral imaging[J]. Applied Optics, 2013, 52(10): D12.
ARGUELLO H, RUEDA H, WU Y H, et al.. Higher-order computational model for coded aperture spectral imaging[J]. Applied Optics, 2013, 52(10): D12.
[40] ARGUELLO H, ARCE G R. Rank minimization code aperture design for spectrally selective compressive imaging[J]. IEEE Transactions on Image Processing, 2013, 22(3): 941-954.
ARGUELLO H, ARCE G R. Rank minimization code aperture design for spectrally selective compressive imaging[J]. IEEE Transactions on Image Processing, 2013, 22(3): 941-954.
[41] WANG L Z, XIONG Z W, GAO D H, et al.. Dual-camera design for coded aperture snapshot spectral imaging[J]. Applied Optics, 2015, 54(4): 848-858.
WANG L Z, XIONG Z W, GAO D H, et al.. Dual-camera design for coded aperture snapshot spectral imaging[J]. Applied Optics, 2015, 54(4): 848-858.
[43] TANIDA J, KUMAGAI T, YAMADA K, et al.. Thin observation module by bound optics (TOMBO): an optoelectronic image capturing system[C]. Proc SPIE 4089, Optics in Computing 2000, 2000, 4089: 1030-1036.
TANIDA J, KUMAGAI T, YAMADA K, et al.. Thin observation module by bound optics (TOMBO): an optoelectronic image capturing system[C]. Proc SPIE 4089, Optics in Computing 2000, 2000, 4089: 1030-1036.
[44] TANIDA J, SHOGENJI R, KITAMURA Y, et al.. Color imaging with an integrated compound imaging system[J]. Optics Express, 2003, 11(18): 2109.
TANIDA J, SHOGENJI R, KITAMURA Y, et al.. Color imaging with an integrated compound imaging system[J]. Optics Express, 2003, 11(18): 2109.
[45] HAGEN N , DERENIAK E L. New grating designs for a CTIS imaging spectrometer[C]. Proc. of SPIE, 2007, 6565: 65650N.
HAGEN N , DERENIAK E L. New grating designs for a CTIS imaging spectrometer[C]. Proc. of SPIE, 2007, 6565: 65650N.
[46] ORTYN W E, BASIJI D A. Imaging and analyzing parameters of small moving objects such as cells: US6608682[P]. 2003-08-19.
ORTYN W E, BASIJI D A. Imaging and analyzing parameters of small moving objects such as cells: US6608682[P]. 2003-08-19.