[1] SUN W, MU R, LUO X, et al. Effect of chloride salt, freeze–thaw cycling and externally applied load on the performance of the concrete[J]. Cem Concr Res, 2002, 32(12): 1859–1864.
[2] WANG R J, HU Z Y, LI Y, et al. Review on the deterioration and approaches to enhance the durability of concrete in the freeze–thaw environment[J]. Constr Build Mater, 2022, 321: 126371.
[4] Standard test method for resistance of concrete to rapid freezing and thawing: ASTM C666/C666M-15[S]. ASTM International, 2015.
[5] Standard test method for scaling resistance of concrete surfaces exposed to deicing chemicals: ASTM C672/C672M[S]. ASTM, 2012.
[6] Testing hardened concrete Part 9: Freeze-thaw resistance with deicing salts — Scaling: BS PD CEN/TS 12390-9[S]. BSI, 2016.
[7] TANG L, PETERSSON P E. Slab test: Freeze/thaw resistance of concrete—Internal deterioration[J]. Mater Struct, 2004, 37(10): 754–759.
[8] SETZER M J, HEINE P, KASPAREK S, et al. Test methods of frost resistance of concrete: CIF-Test: Capillary suction, internal damage and freeze thaw test—Reference method and alternative methods A and B[J]. Mater Struct, 2004, 37(10): 743–753.
[13] Setzer Max J. Frostbelastungsmessung mit Behinderung der Verformungen eines porsen Prfkrpers[P]. DE Patent, 14166123.1 2014
[17] Powers T C, Willis T F. Air requirement of frost-resistant concrete[J]. High Res Board Proc,1949, 33: 1–19.
[19] POWERS T C, HELMUTH R A. Theory of volume changes in hardened Portland cement paste during freezing[J]. High Res Board Proc, 1953, 32: 285–297.
[20] FAGERLUND G. The international cooperative test of the critical degree of saturation method of assessing the freeze/thaw resistance of concrete[J]. Matriaux Constr, 1977, 10(4): 231–253.
[21] SCHERER G W. Freezing gels[J]. J Non Cryst Solids, 1993, 155(1): 1–25.
[22] WANG Z D, ZENG Q, WANG L, et al. Characterizing frost damages of concrete with flatbed scanner[J]. Constr Build Mater, 2016, 102: 872–883.
[23] SETZER M J. Micro-ice-lens formation in porous solid[J]. J Colloid Interface Sci, 2001, 243(1): 193–201.
[26] LIU Z C, HANSEN W. Freezing characteristics of air-entrained concrete in the presence of deicing salt[J]. Cem Concr Res, 2015, 74: 10–18.
[27] SUN Z H, SCHERER G W. Pore size and shape in mortar by thermoporometry[J]. Cem Concr Res, 2010, 40(5): 740–751.
[28] ZENG Q, LI L, PANG X Y, et al. Freeze–thaw behavior of air entrained cement paste saturated with 10wt.% NaCl solution[J]. Cold Reg Sci Technol, 2014, 102: 21–31.
[29] LIU Z C, HANSEN W. Freeze–thaw durability of high strength concrete under deicer salt exposure[J]. Constr Build Mater, 2016, 102: 478–485.
[30] SUN Z H, SCHERER G W. Effect of air voids on salt scaling and internal freezing[J]. Cem Concr Res, 2010, 40(2): 260–270.
[35] SETZER M J, AUBERG R, KASPAREK S, et al. CIF-Test-Capillary suction, internal damage and freeze thaw test[J]. Mater Struct, 2001, 34(9): 515–525.
[37] WANG Z D, ZENG Q, WU Y K, et al. Relative humidity and deterioration of concrete under freeze–thaw load[J]. Constr Build Mater, 2014, 62: 18–27.
[39] Setzer M J. Micro ice lens formation and frost damage [C]. Frost Damage in Concrete, 2002: 1–15.
[40] Xu Y D, Wang L, Zhao X. Analysis of internal frost damage of restrained concrete[C]. Recent Advances in Concrete Technology and Sustainability Issues, Beijing, China, 2018.
[41] Organization W M. Guide to meteorological instruments and methods of observation 7th Edition [M]. Geneva Switzerland: 2008.
[42] PENTTALA V, AL-NESHAWY F. Stress and strain state of concrete during freezing and thawing cycles[J]. Cem Concr Res, 2002, 32(9): 1407–1420.
[43] LURA P, JENSEN O M, VAN BREUGEL K. Autogenous shrinkage in high-performance cement paste: An evaluation of basic mechanisms[J]. Cem Concr Res, 2003, 33(2): 223–232.