• High Power Laser and Particle Beams
  • Vol. 35, Issue 1, 012009 (2023)
Ruixian Huang1、2, Chuanyi Xi1, Liqi Han1, Jinqing Yu1, Tongpu Yu2, and Xueqing Yan3、4
Author Affiliations
  • 1Key Laboratory of High Energy Physics and Applications of Hunan Province, School of Physics and Electronics, Hunan University, Changsha 410082, China
  • 2College of Science, National University of Defense Technology, Changsha 410073, China
  • 3State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
  • 4Beijing Laser Acceleration Innovation Center, Beijing 101407, China
  • show less
    DOI: 10.11884/HPLPB202335.220229 Cite this Article
    Ruixian Huang, Chuanyi Xi, Liqi Han, Jinqing Yu, Tongpu Yu, Xueqing Yan. Current situation and development trend analysis of femtosecond laser Betatron radiation source[J]. High Power Laser and Particle Beams, 2023, 35(1): 012009 Copy Citation Text show less
    Schematic of the Betatron radiation source[7]
    Fig. 1. Schematic of the Betatron radiation source[7]
    When a0=20,ne=0.1nc, the formation of plasma bubble, injection of electron beam, resonance of electron beam and laser, development of bubble instability and other processes during the interaction between laser and plasma at different moments
    Fig. 2. When a0=20,ne=0.1nc, the formation of plasma bubble, injection of electron beam, resonance of electron beam and laser, development of bubble instability and other processes during the interaction between laser and plasma at different moments
    When a0=20, ne=0.1nc, (a) angular distribution of electrons att = 500 fs, (b) the angular distribution of total photons at t = 1.2 ps, and full-width-at-half-maximum (FWHM) about 6°
    Fig. 3. When a0=20, ne=0.1nc, (a) angular distribution of electrons att = 500 fs, (b) the angular distribution of total photons at t = 1.2 ps, and full-width-at-half-maximum (FWHM) about 6°
    authorbrilliancephoton number per shotEc/keV
    A. Rousse[37], 2004 2×1022 ph·s−1·mm−2·mrad−2·(0.1%bw)−11×1082
    S. Kneip[38], 2008 1×1017 ph·s−1·mm−2·mrad−2·(0.1%bw)−1N/A36
    S. Mangles[39], 2009 N/A3×1075
    D. Thorn[40], 2010 N/A1×1081.5
    G. Genoud[41], 2011 5 × 104 ph·mrad−21×1081.3
    S. Cipiccia[22], 2011 1×1023 ph·s−1·mm−2·mrad−2·(0.1%bw)−15×10850
    S. Fourmaux[42], 2011 2.2×108 ph·(0.1%bw)−1·sr−11×10912.3
    J. Ju[43], 2012 1×1021 ph·(0.1%bw)−1·sr−11×1094.6
    M. Schnell[19], 2012 5×1021 ph·(0.1%bw)−1·sr−12×1066
    X. Wang[44], 2013 N/A1×10930
    L. Chen[27], 2013 5×1021 ph·(0.1%bw)−1·sr−12×1082.4
    M. Schnell[45], 2013 N/A5×1073
    Y. Ho[46], 2013 N/A2.2×1083.3
    J. Wenz[47], 2015 2×1022 ph·(0.1%bw)−1·sr−15×1075.2
    J. M. Cole[48], 2015 1.1×1021 ph·(0.1%bw)−1·sr−11.3×10933
    K. Huang[49], 2016 N/A8×10875
    A. Dopp[50], 2018 1.6×109 ph·msr−1·s−11×108N/A
    J. Feng[36], 2019 1.8 ×1020 ph·msr−1·s−17 × 107N/A
    Y. F. Li[29], 2020 N/A1013 ph·sr−1N/A
    X. F. Shen[31], 2021 3.3×1020 ph·msr−1·s−17×10115
    Table 1. Statistics of related Betatron radiation source experiments
    Ruixian Huang, Chuanyi Xi, Liqi Han, Jinqing Yu, Tongpu Yu, Xueqing Yan. Current situation and development trend analysis of femtosecond laser Betatron radiation source[J]. High Power Laser and Particle Beams, 2023, 35(1): 012009
    Download Citation