• Photonics Research
  • Vol. 12, Issue 8, 1673 (2024)
Ross C. Cowie1,2 and Marcel Schubert2,*
Author Affiliations
  • 1SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
  • 2Humboldt Centre for Nano and Biophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
  • show less
    DOI: 10.1364/PRJ.522018 Cite this Article Set citation alerts
    Ross C. Cowie, Marcel Schubert, "Light sheet microscope scanning of biointegrated microlasers for localized refractive index sensing," Photonics Res. 12, 1673 (2024) Copy Citation Text show less
    References

    [1] D. Yu, M. Humar, K. Meserve. Whispering-gallery-mode sensors for biological and physical sensing. Nat. Rev. Methods Prim., 1, 83(2021).

    [2] Y. Chen, X. Fan. Biological lasers for biomedical applications. Adv. Opt. Mater., 7, 1900377(2019).

    [3] L. He, Ş. K. Özdemir, J. Zhu. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat. Nanotechnol., 6, 428-432(2011).

    [4] M. Schubert, L. Woolfson, I. R. M. Barnard. Monitoring contractility in cardiac tissue with cellular resolution using biointegrated microlasers. Nat. Photonics, 14, 452-458(2020).

    [5] M. Schubert, A. Steude, P. Liehm. Lasing within live cells containing intracellular optical microresonators for barcode-type cell tagging and tracking. Nano Lett., 15, 5647-5652(2015).

    [6] M. Humar, S. H. Yun. Intracellular microlasers. Nat. Photonics, 9, 572-576(2015).

    [7] N. Martino, S. J. J. Kwok, A. C. Liapis. Wavelength-encoded laser particles for massively multiplexed cell tagging. Nat. Photonics, 13, 720-727(2019).

    [8] Z. Wang, G. Fang, Z. Gao. Autonomous microlasers for profiling extracellular vesicles from cancer spheroids. Nano Lett., 23, 2502-2510(2023).

    [9] A. H. Fikouras, M. Schubert, M. Karl. Non-obstructive intracellular nanolasers. Nat. Commun., 9, 4817(2018).

    [10] M. Schubert, K. Volckaert, M. Karl. Lasing in live mitotic and non-phagocytic cells by efficient delivery of microresonators. Sci. Rep., 7, 40877(2017).

    [11] V. M. Titze, S. Caixeiro, V. S. Dinh. Hyperspectral confocal imaging for high-throughput readout and analysis of bio-integrated microlasers. Nat. Protoc., 19, 928-959(2024).

    [12] R. M. Power, J. Huisken. A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat. Methods, 14, 360-373(2017).

    [13] E. H. K. Stelzer, F. Strobl, B.-J. Chang. Light sheet fluorescence microscopy. Nat. Rev. Methods Prim., 1, 73(2021).

    [14] O. E. Olarte, J. Andilla, E. J. Gualda. Light-sheet microscopy: a tutorial. Adv. Opt. Photonics, 10, 111(2018).

    [15] R. Tomer, K. Khairy, F. Amat. Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat. Methods, 9, 755-763(2012).

    [16] M. Mickoleit, B. Schmid, M. Weber. High-resolution reconstruction of the beating zebrafish heart. Nat. Methods, 11, 919-922(2014).

    [17] G. Malkinson, P. Mahou, É. Chaudan. Fast in vivo imaging of SHG nanoprobes with multiphoton light-sheet microscopy. ACS Photonics, 7, 1036-1049(2020).

    [18] F. Strobl, M. F. Schetelig, E. H. K. Stelzer. In toto light sheet fluorescence microscopy live imaging datasets of Ceratitis capitata embryonic development. Sci. Data, 9, 340(2022).

    [19] C.-L. Zou, F.-J. Shu, F.-W. Sun. Theory of free space coupling to high-Q whispering gallery modes. Opt. Express, 21, 9982-9995(2013).

    [20] S. Schiller. Asymptotic expansion of morphological resonance frequencies in Mie scattering. Appl. Opt., 32, 2181-2185(1993).

    [21] S. Caixeiro, C. Kunstmann-Olsen, M. Schubert. Local sensing of absolute refractive index during protein-binding using microlasers with spectral encoding. Adv. Opt. Mater., 11, 2300530(2023).

    [22] R. Schlüßler, S. Möllmert, S. Abuhattum. Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by Brillouin imaging. Biophys. J., 115, 911-923(2018).

    [23] C. Schmidt, A. Deyett, T. Ilmer. Multi-chamber cardioids unravel human heart development and cardiac defects. Cell, 186, 5587-5605(2023).

    [24] M. Hofer, M. P. Lutolf. Engineering organoids. Nat. Rev. Mater., 6, 402-420(2021).

    [25] G. Pirnat, M. Marinčič, M. Ravnik. Quantifying local stiffness and forces in soft biological tissues using droplet optical microcavities. Proc. Natl. Acad. Sci. USA, 121, e2314884121(2024).

    [26] E. Dalaka, J. S. Hill, J. H. H. Booth. Deformable microlaser force sensing. Light Sci. Appl., 13, 129(2024).

    [27] C. Dunsby. Optically sectioned imaging by oblique plane microscopy. Opt. Express, 16, 20306-20316(2008).

    [28] V. Voleti, K. B. Patel, W. Li. Real-time volumetric microscopy of in vivo dynamics and large-scale samples with SCAPE 2.0. Nat. Methods, 16, 1054-1062(2019).

    [29] V. M. Titze, S. Caixeiro, A. Di Falco. Red-shifted excitation and two-photon pumping of biointegrated GaInP/AlGaInP quantum well microlasers. ACS Photonics, 9, 952-960(2022).

    Ross C. Cowie, Marcel Schubert, "Light sheet microscope scanning of biointegrated microlasers for localized refractive index sensing," Photonics Res. 12, 1673 (2024)
    Download Citation