• Advanced Photonics
  • Vol. 5, Issue 6, 066001 (2023)
Jianpeng Ao1、†, Xiaofeng Fang2, Liyang Ma1, Zhijie Liu1, Simin Wu1, Changfeng Wu2, and Minbiao Ji1、*
Author Affiliations
  • 1Fudan University, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Academy for Engineering and Technology, Department of Physics, State Key Laboratory of Surface Physics, Shanghai, China
  • 2Southern University of Science and Technology, Department of Biomedical Engineering, Shenzhen, China
  • show less
    DOI: 10.1117/1.AP.5.6.066001 Cite this Article Set citation alerts
    Jianpeng Ao, Xiaofeng Fang, Liyang Ma, Zhijie Liu, Simin Wu, Changfeng Wu, Minbiao Ji. Photoswitchable vibrational nanoscopy with sub-100-nm optical resolution[J]. Advanced Photonics, 2023, 5(6): 066001 Copy Citation Text show less
    References

    [1] S. W. Hell. Toward fluorescence nanoscopy. Nat. Biotechnol., 21, 1347-1355(2003).

    [2] S. W. Hell. Far-field optical nanoscopy. Science, 316, 1153-1158(2007).

    [3] S. W. Hell. Microscopy and its focal switch. Nat. Methods, 6, 24-32(2009).

    [4] B. Huang, H. Babcock, X. Zhuang. Breaking the diffraction barrier: super-resolution imaging of cells. Cell, 143, 1047-1058(2010).

    [5] L. Wei et al. Super-multiplex vibrational imaging. Nature, 544, 465-470(2017).

    [6] L. Shi et al. Highly-multiplexed volumetric mapping with Raman dye imaging and tissue clearing. Nat. Biotechnol., 40, 364-373(2021).

    [7] W. Min et al. Coherent nonlinear optical imaging: beyond fluorescence microscopy. Annu. Rev. Phys. Chem., 62, 507-530(2011).

    [8] F. Hu et al. Supermultiplexed optical imaging and barcoding with engineered polyynes. Nat. Methods, 15, 194-200(2018).

    [9] J. Qi et al. Boosting fluorescence-photoacoustic-Raman properties in one fluorophore for precise cancer surgery. Chem, 5, 2657-2677(2019).

    [10] Y. Bi et al. Near-resonance enhanced label-free stimulated Raman scattering microscopy with spatial resolution near 130 nm. Light Sci. Appl., 7, 81(2018).

    [11] L. Gong et al. Saturated stimulated-raman-scattering microscopy for far-field superresolution vibrational imaging. Phys. Rev. Appl., 11, 034041(2019).

    [12] C. Qian et al. Super-resolution label-free volumetric vibrational imaging. Nat. Commun., 12, 3648(2021).

    [13] H. Xiong et al. Super-resolution vibrational microscopy by stimulated Raman excited fluorescence. Light Sci. Appl., 10, 87(2021).

    [14] L. Shi et al. Super-resolution vibrational imaging using expansion stimulated Raman scattering microscopy. Adv. Sci., 9, e2200315(2022).

    [15] L. Gong et al. Higher-order coherent anti-Stokes Raman scattering microscopy realizes label-free super-resolution vibrational imaging. Nat. Photonics, 14, 115-122(2019).

    [16] H. Jang et al. Super-resolution SRS microscopy with A-PoD. Nat. Methods, 20, 448-458(2023).

    [17] M. Hofmann et al. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc. Natl. Acad. Sci. U. S. A., 102, 17565-17569(2005).

    [18] S. Wang et al. GMars-Q enables long-term live-cell parallelized reversible saturable optical fluorescence transitions nanoscopy. ACS Nano, 10, 9136-9144(2016).

    [19] F. Pennacchietti et al. Fast reversibly photoswitching red fluorescent proteins for live-cell RESOLFT nanoscopy. Nat. Methods, 15, 601-604(2018).

    [20] J. Ao et al. Switchable stimulated Raman scattering microscopy with photochromic vibrational probes. Nat. Commun., 12, 3089(2021).

    [21] T. A. Klar et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. U. S. A., 97, 8206-8210(2000).

    [22] M. G. Gustafsson. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. U. S. A., 102, 13081-13086(2005).

    [23] E. Betzig et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642-1645(2006).

    [24] M. J. Rust, M. Bates, X. Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3, 793-796(2006).

    [25] M. Irie. Diarylethenes for memories and switches. Chem. Rev., 100, 1685-1716(2000).

    [26] M. Irie et al. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev., 114, 12174-12277(2014).

    [27] X. Fang et al. Multicolor photo-crosslinkable AIEgens toward compact nanodots for subcellular imaging and STED nanoscopy. Small, 13, 1702128(2017).

    [28] D. Li et al. AIE nanoparticles with high stimulated emission depletion efficiency and photobleaching resistance for long-term super-resolution bioimaging. Adv. Mater., 29, 1703643(2017).

    [29] C. W. Freudiger et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science, 322, 1857-1861(2008).

    [30] M. Ji et al. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy. Sci. Transl. Med., 5, 201ra119(2013).

    [31] J. X. Cheng, X. S. Xie. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science, 350, aaa8870(2015).

    [32] Q. Cheng et al. Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy. Nat. Commun., 9, 2942(2018).

    [33] H. Xiong et al. Stimulated Raman excited fluorescence spectroscopy and imaging. Nat. Photonics, 13, 412-417(2019).

    [34] C. Chen et al. Multiplexed live-cell profiling with Raman probes. Nat. Commun., 12, 3405(2021).

    [35] D. Lee et al. Toward photoswitchable electronic pre-resonance stimulated Raman probes. J. Chem. Phys., 154, 135102(2021).

    [36] J. Shou, Y. Ozeki. Photoswitchable stimulated Raman scattering spectroscopy and microscopy. Opt. Lett., 46, 2176-2179(2021).

    [37] Y. Miao et al. 9-Cyanopyronin probe palette for super-multiplexed vibrational imaging. Nat. Commun., 12, 4518(2021).

    [38] L. Wei et al. Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering. Nat. Methods, 11, 410-412(2014).

    [39] B. Manifold et al. Denoising of stimulated Raman scattering microscopy images via deep learning. Biomed. Opt. Express, 10, 3860-3874(2019).

    [40] B. Manifold et al. Versatile deep learning architecture for classification and label-free prediction of hyperspectral images. Nat. Mach. Intell., 3, 306-315(2021).

    [41] Z. Liu et al. Instant diagnosis of gastroscopic biopsy via deep-learned single-shot femtosecond stimulated Raman histology. Nat. Commun., 13, 4050(2022).

    [42] J. Ao et al. Stimulated Raman scattering microscopy enables Gleason scoring of prostate core needle biopsy by a convolutional neural network. Cancer Res., 83, 641-651(2023).

    Jianpeng Ao, Xiaofeng Fang, Liyang Ma, Zhijie Liu, Simin Wu, Changfeng Wu, Minbiao Ji. Photoswitchable vibrational nanoscopy with sub-100-nm optical resolution[J]. Advanced Photonics, 2023, 5(6): 066001
    Download Citation