• Nano-Micro Letters
  • Vol. 16, Issue 1, 067 (2024)
Jiaxin Ma1,2, Jieqiong Qin3, Shuanghao Zheng1,4,*, Yinghua Fu1,5..., Liping Chi1, Yaguang Li6, Cong Dong1,5, Bin Li1,5, Feifei Xing1,5, Haodong Shi1,4 and Zhong-Shuai Wu1,4,**|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People’s Republic of China
  • 2School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
  • 3College of Science, Henan Agricultural University, No. 63 Agricultural Road, Zhengzhou 450002, People’s Republic of China
  • 4Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, People’s Republic of China
  • 5University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
  • 6Hebei Key Lab of Optic-Electronic Information and Materials, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding 071002, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-023-01281-5 Cite this Article
    Jiaxin Ma, Jieqiong Qin, Shuanghao Zheng, Yinghua Fu, Liping Chi, Yaguang Li, Cong Dong, Bin Li, Feifei Xing, Haodong Shi, Zhong-Shuai Wu. Hierarchically Structured Nb2O5 Microflowers with Enhanced Capacity and Fast-Charging Capability for Flexible Planar Sodium Ion Micro-Supercapacitors[J]. Nano-Micro Letters, 2024, 16(1): 067 Copy Citation Text show less
    References

    [1] N.A. Kyeremateng, T. Brousse, D. Pech, Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. 12(1), 7–15 (2017).

    [2] P. Zhang, F. Wang, M. Yu, X. Zhuang, X. Feng, Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chem. Soc. Rev. 47(19), 7426–7451 (2018).

    [3] M. Ye, Z. Zhang, Y. Zhao, L. Qu, Graphene platforms for smart energy generation and storage. Joule 2, 245–268 (2018).

    [4] H.C. Ates, P.Q. Nguyen, L. Gonzalez-Macia, E. Morales-Narvaez, F. Guder et al., End-to-end design of wearable sensors. Nat. Rev. Mater. 7(11), 887–907 (2022).

    [5] X. Wan, T. Mu, G. Yin, Intrinsic Self-healing chemistry for next-generation flexible energy storage devices. Nano-Micro Lett. 15(1), 99 (2023).

    [6] J. Ding, W. Hu, E. Paek, D. Mitlin, Review of hybrid ion capacitors: From aqueous to lithium to sodium. Chem. Rev. 118(14), 6457–6498 (2018).

    [7] S. Zheng, J. Ma, Z.-S. Wu, F. Zhou, Y.-B. He et al., All-solid-state flexible planar lithium ion micro-capacitors. Energy Environ. Sci. 11(8), 2001–2009 (2018).

    [8] J. Ma, S. Zheng, L. Chi, Y. Liu, Y. Zhang et al., 3D printing flexible sodium-ion microbatteries with ultrahigh areal capacity and robust rate capability. Adv. Mater. 34(39), e2205569 (2022).

    [9] Y.-F. Ren, Z.-L. He, H.-Z. Zhao, T. Zhu, Fabrication of MOF-derived mixed metal oxides with carbon residues for pseudocapacitors with long cycle life. Rare Met. 41(3), 830–835 (2022).

    [10] S. Liu, H. Cheng, R. Mao, W. Jiang, L. Wang et al., Designing zwitterionic gel polymer electrolytes with dual-ion solvation regulation enabling stable sodium ion capacitor. Adv. Energy Mater. 13(18), 2300068 (2023).

    [11] J. Ruan, S. Luo, S. Wang, J. Hu, F. Fang et al., Enhancing the whole migration kinetics of Na+ in the anode side for advanced ultralow temperature sodium-ion hybrid capacitor. Adv. Energy Mater. 13(34), 2301509 (2023).

    [12] Y.M. Jung, J.H. Choi, D.W. Kim, J.K. Kang, 3D porous oxygen-doped and nitrogen-doped graphitic carbons derived from metal azolate frameworks as cathode and anode materials for high-performance dual-carbon sodium-ion hybrid capacitors. Adv. Sci. 10(24), e2301160 (2023).

    [13] C. Sun, X. Zhang, Y. An, C. Li, L. Wang et al., Low-temperature carbonized nitrogen-doped hard carbon nanofiber toward high-performance sodium-ion capacitors. Energy Environ. Mater. 6(4), e12603 (2023).

    [14] J. Ding, H. Wang, Z. Li, K. Cui, D. Karpuzov et al., Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors. Energy Environ. Sci. 8, 941–955 (2015).

    [15] N. Kurra, M. Alhabeb, K. Maleski, C.-H. Wang, H.N. Alshareef et al., Bistacked titanium carbide (MXene) anodes for hybrid sodium-ion capacitors. ACS Energy Lett. 3(9), 2094–2100 (2018).

    [16] S. Zheng, S. Wang, Y. Dong, F. Zhou, J. Qin et al., All-solid-state planar sodium-ion microcapacitors with multidirectional fast ion diffusion pathways. Adv. Sci. 6(23), 1902147 (2019).

    [17] J. Ma, S. Zheng, P. Das, P. Lu, Y. Yu et al., Sodium ion microscale electrochemical energy storage device: present status and future perspective. Small Struct. 1(1), 2000053 (2020).

    [18] A. Brady, K. Liang, V.Q. Vuong, R. Sacci, K. Prenger et al., Pre-sodiated Ti3C2Tx MXene structure and behavior as electrode for sodium-ion capacitors. ACS Nano 15(2), 2994–3003 (2021).

    [19] L. Deng, J. Wang, G. Zhu, L. Kang, Z. Hao et al., RuO2/graphene hybrid material for high performance electrochemical capacitor. J. Power. Sources 248, 407–415 (2014).

    [20] Y. Xia, L. Que, F. Yu, L. Deng, Z. Liang et al., Tailoring nitrogen terminals on MXene enables fast charging and stable cycling Na-ion batteries at low temperature. Nano-Micro Lett. 14(1), 143 (2022).

    [21] Y.-E. Zhu, L. Yang, J. Sheng, Y. Chen, H. Gu et al., Fast sodium storage in TiO2@CNT@C nanorods for high-performance Na-ion capacitors. Adv. Energy Mater. 7(22), 1701222 (2017).

    [22] Q. Yang, S. Cui, Y. Ge, Z. Tang, Z. Liu et al., Porous single-crystal NaTi2(PO4)3via liquid transformation of TiO2 nanosheets for flexible aqueous Na-ion capacitor. Nano Energy 50, 623–631 (2018).

    [23] Z. Jian, V. Raju, Z. Li, Z. Xing, Y.-S. Hu et al., A High-power symmetric Na-ion pseudocapacitor. Adv. Funct. Mater. 25(36), 5778–5785 (2015).

    [24] Q. Wei, Q. Li, Y. Jiang, Y. Zhao, S. Tan et al., High-energy and high-power pseudocapacitor-battery hybrid sodium-ion capacitor with Na+ intercalation pseudocapacitance anode. Nano-Micro Lett. 13(1), 55 (2021).

    [25] F. Zhang, S. Wei, W. Wei, J. Zou, G. Gu et al., Trimethyltriazine-derived olefin-linked covalent organic framework with ultralong nanofibers. Sci. Bull. 65(19), 1659–1666 (2020).

    [26] J. Xu, Y. He, S. Bi, M. Wang, P. Yang et al., An olefin-linked covalent organic framework as a flexible thin-film electrode for a high-performance micro-supercapacitor. Angew. Chem. Int. Ed. 58(35), 12065–12069 (2019).

    [27] Z. Ye, Y. Jiang, L. Li, F. Wu, R. Chen, Rational design of MOF-based materials for next-generation rechargeable batteries. Nano-Micro Lett. 13(1), 203 (2021).

    [28] F. Su, J. Qin, P. Das, F. Zhou, Z.-S. Wu, A high-performance rocking-chair lithium-ion battery-supercapacitor hybrid device boosted by doubly matched capacity and kinetics of the faradaic electrodes. Energy Environ. Sci. 14(4), 2269–2277 (2021).

    [29] D. Chen, Y. Wu, Z. Huang, J. Chen, A novel hybrid point defect of oxygen vacancy and phosphorus doping in TiO2 anode for high-performance sodium ion capacitor. Nano-Micro Lett. 14(1), 156 (2022).

    [30] H. Yang, H. Xu, L. Wang, L. Zhang, Y. Huang et al., Microwave-assisted rapid synthesis of self-assembled T-Nb2O5 nanowires for high-energy hybrid supercapacitors. Chem. Eur. J. 23(17), 4203–4209 (2017).

    [31] Y. Jiang, S. Guo, X. Hu, Bifunctional sodium compensation of anodes for hybrid sodium-ion capacitors. Sci. China Mater. 66(8), 3084–3092 (2023).

    [32] Q. Deng, F. Chen, S. Liu, A. Bayaguud, Y. Feng et al., Advantageous functional integration of adsorption-intercalation-conversion hybrid mechanisms in 3D flexible Nb2O5@hard carbon@MoS2@soft carbon fiber paper anodes for ultrafast and super-stable sodium storage. Adv. Funct. Mater. 30(10), 1908665 (2020).

    [33] F. Liu, X. Cheng, R. Xu, Y. Wu, Y. Jiang et al., Binding sulfur-doped Nb2O5 hollow nanospheres on sulfur-doped graphene networks for highly reversible sodium storage. Adv. Funct. Mater. 28(18), 1800394 (2018).

    [34] H. Yang, R. Xu, Y. Gong, Y. Yao, L. Gu et al., An interpenetrating 3D porous reticular Nb2O5@carbon thin film for superior sodium storage. Nano Energy 48, 448–455 (2018).

    [35] S. Hemmati, G. Li, X. Wang, Y. Ding, Y. Pei et al., 3D N-doped hybrid architectures assembled from 0D T-Nb2O5 embedded in carbon microtubes toward high-rate Li-ion capacitors. Nano Energy 56, 118–126 (2019).

    [36] D. Luo, C. Ma, J. Hou, Z. Zhang, R. Feng et al., Integrating nanoreactor with O–Nb–C heterointerface design and defects engineering toward high-efficiency and longevous sodium ion battery. Adv. Energy Mater. 12(18), 2103716 (2022).

    [37] H. Kim, E. Lim, C. Jo, G. Yoon, J. Hwang et al., Ordered-mesoporous Nb2O5/carbon composite as a sodium insertion material. Nano Energy 16, 62–70 (2015).

    [38] Y. Li, H. Wang, L. Wang, Z. Mao, R. Wang et al., Mesopore-induced ultrafast Na+-storage in T-Nb2O5/carbon nanofiber films toward flexible high-power Na-ion capacitors. Small 15(9), 1804539 (2019).

    [39] Y. Jiang, S. Guo, Y. Li, X. Hu, Rapid microwave synthesis of carbon-bridged Nb2O5 mesocrystals for high-energy and high-power sodium-ion capacitors. J. Mater. Chem. A 10(21), 11470–11476 (2022).

    [40] Z. Bi, Y. Zhang, X. Li, Y. Liang, W. Ma et al., Porous fibers of carbon decorated T-Nb2O5 nanocrystal anchored on three-dimensional rGO composites combined with rGO nanosheets as an anode for high-performance flexible sodium-ion capacitors. Electrochim. Acta 411, 140070 (2022).

    [41] C. Xu, Y. Xu, C. Tang, Q. Wei, J. Meng et al., Carbon-coated hierarchical NaTi2(PO4)3 mesoporous microflowers with superior sodium storage performance. Nano Energy 28, 224–231 (2016).

    [42] Z. Zhao, G. Huang, Y. Kong, J. Cui, A.A. Solovev et al., Atomic layer deposition for electrochemical energy: from design to industrialization. Electrochem. Energy Rev. 5(S1), 31 (2022).

    [43] S. Sollami Delekta, A.D. Smith, J. Li, M. Ostling, Inkjet printed highly transparent and flexible graphene micro-supercapacitors. Nanoscale 9(21), 6998–7005 (2017).

    [44] H. Li, Y. Hou, F. Wang, M.R. Lohe, X. Zhuang et al., Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene. Adv. Energy Mater. 7(4), 1601847 (2017).

    [45] J. Orangi, F. Hamade, V.A. Davis, M. Beidaghi, 3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities. ACS Nano 14(1), 640–650 (2020).

    [46] H. Xiao, Z.S. Wu, L. Chen, F. Zhou, S. Zheng et al., One-step device fabrication of phosphorene and graphene interdigital micro-supercapacitors with high energy density. ACS Nano 11(7), 7284–7292 (2017).

    [47] D. Chen, J.H. Wang, T.F. Chou, B. Zhao, M.A. El-Sayed et al., Unraveling the nature of anomalously fast energy storage in T-Nb2O5. J. Am. Chem. Soc. 139(20), 7071–7081 (2017).

    [48] J. Ni, W. Wang, C. Wu, H. Liang, J. Maier et al., Highly reversible and durable Na storage in niobium pentoxide through optimizing structure, composition, and nanoarchitecture. Adv. Mater. 29(9), 1605607 (2017).

    [49] R.M. Pittman, A.T. Bell, Raman studies of the structure of Nb2O5/TiO2. J. Phys. Chem. 91, 12178–12185 (1993).

    [50] Y. Gao, S. Zheng, H. Fu, J. Ma, X. Xu et al., Three-dimensional nitrogen doped hierarchically porous carbon aerogels with ultrahigh specific surface area for high-performance supercapacitors and flexible micro-supercapacitors. Carbon 168, 701–709 (2020).

    [51] H. Li, Y. Zhu, S. Dong, L. Shen, Z. Chen et al., Self-assembled Nb2O5 nanosheets for high energy–high power sodium ion capacitors. Chem. Mater. 28(16), 5753–5760 (2016).

    [52] L. Wang, X. Bi, S. Yang, Partially Single-crystalline mesoporous Nb2O5 nanosheets in between graphene for ultrafast sodium storage. Adv. Mater. 28(35), 7672–7679 (2016).

    [53] S. Zheng, H. Huang, Y. Dong, S. Wang, F. Zhou et al., Ionogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability. Energy Environ. Sci. 13(3), 821–829 (2020).

    [54] H. Lindstrom, S. Sodergren, A. Solbrand, H. Rensmo, J. Hjelm et al., Li+ ion insertion in TiO2 (anatase). 2 Voltammetry on nanoporous films. J. Phys. Chem. B 101, 7717–7722 (1997).

    [55] J. Ma, J. Li, R. Guo, H. Xu, F. Shi et al., Direct growth of flake-like metal-organic framework on textile carbon cloth as high-performance supercapacitor electrode. J. Power. Sources 428, 124–130 (2019).

    [56] S. Ardizzone, G. Fergonnara, S. Trasatti, “Inner” and “outer” active surface of RuO2 electrodes. Electrochim. Acta 35(1), 263–267 (1990).

    [57] R. Bai, M. Zhang, X. Zhang, S. Zhao, W. Chen et al., A multidimensional topotactic host composite anode toward transparent flexible potassium-ion microcapacitors. ACS Appl. Mater. Interfaces 14(1), 1478–1488 (2022).

    Jiaxin Ma, Jieqiong Qin, Shuanghao Zheng, Yinghua Fu, Liping Chi, Yaguang Li, Cong Dong, Bin Li, Feifei Xing, Haodong Shi, Zhong-Shuai Wu. Hierarchically Structured Nb2O5 Microflowers with Enhanced Capacity and Fast-Charging Capability for Flexible Planar Sodium Ion Micro-Supercapacitors[J]. Nano-Micro Letters, 2024, 16(1): 067
    Download Citation