[1] MAIS J J, MICHAEL S B, KAMLESH D P. Digital microfluidics: a versatile tool for applications in chemistry, biology and medicine [J].Lab on a Chip, 2012, 12: 2452-2463.
[2] MOHAMED A, PHILIP P, AARON R W. Optimization of device geometry in single-plate digital microfluidics [J]. Journal of Applied Physics, 2009, 105(9), 094506.
[3] BERTHIER J, CLEMENTA P, FOUILLET Y, et al.. Computer aided design of an EWOD microdevice [J]. Sensors and Actuators A, 2006, A127: 283-294.
[4] PENG CH, FANG B Y,WE Z. Influence of electrolytes on contact angles of droplets under electric field [J]. Analyst, 2013, 138: 2372-2377.
[5] BIDDUT B. Study of droplet splitting in an electrowetting based digital Systems [D]. Okanagan: University of British Columbia,2012.
[6] HERMAN O,BART V,MARTINE B. Modeling and control of electrowetting induced droplet motion [J]. Micromachines, 2012, 3: 150-167.
[7] AHMADI A,NAJJARAN H, HOORFAR M, et al.. Two-dimensional flow dynamics in digital microfluidic systems[J]. Journal of Micromchanics and Microengineering, 2009, 19: 065003.
[8] CHEN CH H, TSAI S L, JANG L SH, et al.. Effects of gap height, applied frequency, and fluid conductivity on minimum actuation voltage of electrowetting-on-dielectric and liquid dielectrophoresis [J]. Sensors and Actuators: Chemical, 2011, B 159: 321-327.
[9] BIDDUT B, HONMAYOUN N. Droplet position control in digital microfluidic systems [J]. Biomed Microdevices, 2010, 12: 115-124.
[10] BIDDUT B, HOMAYOUN N. Simulation of droplet position control in digital microfluidic systems [J]. Journal of Dynamic Systems, Measurement, and Control, 2010, 132: 014501.
[11] CHANG J H,KIM D S,JAMS J.Simplified ground-type single electrowetting device for droplet transport [J].Journal of Electrical Engineering & Technology,2011,6(3): 402-407.
[12] CHANG J H, JAMS J P. Twin-plate electrowetting for efficient digital microfluidics [J]. Sensors and Actuators , 2010, B' 160: 1581-1585.