• Journal of Applied Optics
  • Vol. 40, Issue 6, 1152 (2019)
CAO Yuan, XIE Yingchao, WANG Ruifeng, LIU Kun..., GAO Xiaoming and ZHANG Weijun|Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.5768/jao201940.0605003 Cite this Article
    CAO Yuan, XIE Yingchao, WANG Ruifeng, LIU Kun, GAO Xiaoming, ZHANG Weijun. Recent advances of photoacoustic spectroscopy techniques for gases sensing[J]. Journal of Applied Optics, 2019, 40(6): 1152 Copy Citation Text show less
    References

    [1] BELL A G. On the production and reproduction of sound by light[J]. American Journal of Science, 1880 (118): 305-324.

    [2] KERR E L, ATWOOD J G. The laser illuminated absorptivity spectrophone: A method for measurement of weak absorptivity in gases at laser wavelengths[J]. Applied Optics, 1968, 7(5): 915-921.

    [3] KREUZER L B. Ultralow gas concentration infrared absorption spectroscopy[J]. Journal of Applied Physics,1971, 42(7): 2934-2943.

    [4] HARSHBARGER W R, ROBIN M B. Opto-acoustic effect: Revival of an old technique for molecular spectroscopy[J]. Accounts of Chemical Research, 1973, 6(10): 329-334.

    [5] BRUCE C W, PINNICK R G. In-situ measurements of aerosol absorption with a resonant cw laser spectrophone[J]. Applied Optics, 1977, 16(7): 1762.

    [6] YIN X K, DONG L, WU H P, et al. Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5W blue multimode diode laser[J]. Sensors and Actuators B: Chemical, 2017, 247: 329-335.

    [7] ZHOU Y, CAO Y, ZHU G D, et al. Detection of nitrous oxide by resonant photoacoustic spectroscopy based on mid infrared quantum cascade laser[J]. Acta Phys. Sin., 2018,67: 084201-1-084201-7.

    [8] DEWEY C F Jr, KAMM R D, HACKETT C E. Acoustic amplifier for detection of atmospheric pollutants[J]. Applied Physics Letters,1973, 23(11): 633-635.

    [9] KAMM R D. Detection of weakly absorbing gases using a resonant optoacoustic method[J]. Journal of Applied Physics,1976, 47(8): 3550-3558.

    [10] GUPTA J P, SACHDEV R N. Theoretical model of an optoacoustic detector[J]. Applied Physics Letters,1980, 36(12): 960-962.

    [11] BIJNEN F G C, REUSS J, HARREN F J M. Geometrical optimization of a longitudinal resonant photoacoustic cell for sensitive and fast trace gas detection[J]. Review of Scientific Instruments,1996, 67(8): 2914-2923.

    [12] MIKLS A, HESS P, BOZKI Z. Application of acoustic resonators in photoacoustic trace gas analysis and metrology[J]. Review of Scientific Instruments,2001, 72(4): 1937-1955.

    [13] CHENG G, CAO Y, LIU K, et al. Photoacoustic measurement of ethane with near-infrared DFB diode laser[J]. Journal of Spectroscopy, 2018,9765806: 1-5.

    [14] YIN X K, DONG L, WU H P, et al. Ppb-level H2S detection for SF6 decomposition based on a fiber-amplified telecommunication diode laser and a background-gas-induced high-Q photoacoustic cell[J]. Applied Physics Letters,2017, 111(3): 031109.

    [15] YIN X K, WU H P, DONG L, et al. Ppb-level photoacoustic sensor system for saturation-free CO detection of SF6 decomposition by use of a 10 W fiber-amplified near-infrared diode laser[J]. Sensors and Actuators B: Chemical,2019,282: 567-573.

    [16] YIN X K, DONG L, WU H P, et al. Highly sensitive SO_2 photoacoustic sensor for SF_6 decomposition detection using a compact mW-level diode-pumped solid-state laser emitting at 303 nm[J]. Optics Express,2017,25(26): 32581.

    [17] ZHA S L, LIU K, ZHU G D, et al. Acetylene detection based on resonant high sensitive photoacoustic spectroscopy[J] Spectrosc. Spectr. Anal. ,2017,37: 2673-2678.

    [18] MA Y F, QIAO S D, HE Y, et al. Highly sensitive acetylene detection based on multi-pass retro-reflection-cavity-enhanced photoacoustic spectroscopy and a fiber amplified diode laser[J]. Optics Express, 2019, 27(10): 14163.

    [19] WANG Q, WANG Z, CHANG J, et al. Fiber-ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing[J]. Optics Letters, 2017, 42(11): 2114.

    [20] HAN L, CHEN X L, XIA H, et al. A novel photocoustic spectroscopy system for gas detection based on the multi-pass cell [J].Proceedings of the SPIE,2016,10025: 100250N-1-100250N-7.

    [21] WANG Z, WANG Q, ZHANG W P, et al. Ultrasensitive photoacoustic detection in a high-finesse cavity with pound-drever-hall locking[J]. Optics Letters, 2019, 44(8): 1924.

    [22] WILCKEN K, KAUPPINEN J. Optimization of a microphone for photoacoustic spectroscopy[J]. Applied Spectroscopy, 2003, 57(9): 1087-1092.

    [23] KOSKINEN V, FONSEN J, ROTH K, et al. Progress in cantilever enhanced photoacoustic spectroscopy[J]. Vibrational Spectroscopy, 2008, 48(1): 16-21.

    [24] LAURILA T, CATTANEO H, PYHNEN T, et al. Cantilever-based photoacoustic detection of carbon dioxide using a fiber-amplified diode laser[J]. Applied Physics B, 2006, 83(2): 285-288.

    [25] DOSTL M, SUCHNEK J, VLEK V, et al. Cantilever-enhanced photoacoustic detection and infrared spectroscopy of trace species produced by biomass burning[J]. Energy & Fuels, 2018, 32(10): 10163-10168.

    [26] MIKKONEN T, AMIOT C, AALTO A, et al. Broadband cantilever-enhanced photoacoustic spectroscopy in the mid-IR using a supercontinuum[J]. Optics Letters, 2018, 43(20): 5094.

    [27] TOMBERG T, VAINIO M, HIETA T, et al. Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy[J]. Scientific Reports, 2018, 8: 1848.

    [28] CHEN K, YU Z H, YU Q X, et al. Fast demodulated white-light interferometry-based fiber-optic Fabry-Perot cantilever microphone[J]. Optics Letters, 2018, 43(14): 3417-3420.

    [29] CHEN K, ZHANG B, LIU S, et al. Parts-per-billion-level detection of hydrogen sulfide based on near-infrared all-optical photoacoustic spectroscopy[J]. Sensors and Actuators B: Chemical, 2019, 283: 1-5.

    [30] LIU K, CAO Y, WANG G S, et al. A novel photoacoustic spectroscopy gas sensor using a low cost polyvinylidene fluoride film[J]. Sensors and Actuators B: Chemical, 2018, 277: 571-575.

    [31] KOSTEREV A A, BAKHIRKIN Y A, CURL R F, et al. Quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 2002, 27(21): 1902-1904.

    [32] DONG L, KOSTEREV A A, THOMAZY D, et al. QEPAS spectrophones: design, optimization, and performance[J]. Applied Physics B, 2010, 100(3): 627-635.

    [33] DONG L, WU H P, ZHENG H D, et al. Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy[J].Opt. Lett.,2014,39: 2479-2482.

    [34] LIU K, GUO X Y, YI H M, et al. Off-beam quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 2009, 34(10): 1594-1596.

    [35] LI Z L, SHI C, REN W. Mid-infrared multimode fiber-coupled quantum cascade laser for off-beam quartz-enhanced photoacoustic detection[J]. Optics Letters, 2016, 41(17): 4095-4098.

    [36] YI H M, LIU K, CHEN W D, et al. Application of a broadband blue laser diode to trace NO_2 detection using off-beam quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 2011, 36(4): 481-483.

    [37] ZHENG H D, DONG L, YIN X K, et al. Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED[J]. Sensors and Actuators B: Chemical, 2015, 208: 173-179.

    [38] RCK T, BIERL R, MATYSIK F. NO2 trace gas monitoring in air using off-beam quartz enhanced photoacoustic spectroscopy (QEPAS) and interference studies towards CO2, H2O and acoustic noise[J]. Sensors and Actuators B: Chemical, 2018, 255: 2462-2471.

    [39] BTTGER S, KHRING M, WILLER U, et al. Off-beam quartz-enhanced photoacoustic spectroscopy with LEDs[J]. Applied Physics B, 2013, 113(2): 227-232.

    [40] LASSEN M, LAMARD L, FENG Y Y, et al. Off-axis quartz-enhanced photoacoustic spectroscopy using a pulsed nanosecond mid-infrared optical parametric oscillator[J]. Optics Letters, 2016, 41(17): 4118-4121.

    [41] HU L E, ZHENG C T, ZHENG J, et al. Quartz tuning fork embedded off-beam quartz-enhanced photoacoustic spectroscopy[J]. Optics Letters, 2019, 44(10): 2562-2565.

    [42] BORRI S, PATIMISCO P, GALLI I, et al. Intracavity quartz-enhanced photoacoustic sensor[J]. Applied Physics Letters, 2014, 104(9): 143-162.

    [43] HE Y, MA Y F, TONG Y, et al. HCN ppt-level detection based on a QEPAS sensor with amplified laser and a miniaturized 3D-printed photoacoustic detection channel[J]. Optics Express, 2018, 26(8): 9666-9675.

    [44] PATIMISCO P, BORRI S, SAMPAOLO A, et al. A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser[J]. The Analyst, 2014, 139(9): 2079-2087.

    [45] Borri S, Patimisco P, Sampaolo A, et al. Terahertz quartz enhanced photo-acoustic sensor[J]. Applied Physics Letters, 2013, 103(2): 579.

    [46] SAMPAOLO A, PATIMISCO P, GIGLIO M, et al. Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy[J]. Sensors, 2016, 16(4): 439.

    [47] SPAGNOLO V, PATIMISCO P, PENNETTA R, et al. THz quartz-enhanced photoacoustic sensor for H S trace gas detection[J]. Optics Express, 2015, 23(6): 7574-7582.

    [48] PATIMISCO P, SCAMARCIO G, TITTEL F, et al. Quartz-enhanced photoacoustic spectroscopy: A review[J]. Sensors, 2014, 14(4): 6165-6206.

    [49] PATIMISCO P, SAMPAOLO A, DONG L, et al. Recent advances in quartz enhanced photoacoustic sensing[J]. Applied Physics Reviews, 2018, 5(1): 011106.

    [50] WU H P, YIN X K, DONG L, et al. Simultaneous dual-gas qepas detection based on a fundamental and overtone combined vibration of quartz tuning fork[J].Appl. Phys. Lett., 2017, 110: 121104-1-121104-4.

    [51] LIU K, MEI J X, ZHANG W J, et al. Multi-resonator photoacoustic spectroscopy[J]. Sensors and Actuators B: Chemical,2017, 251: 632-636.

    CAO Yuan, XIE Yingchao, WANG Ruifeng, LIU Kun, GAO Xiaoming, ZHANG Weijun. Recent advances of photoacoustic spectroscopy techniques for gases sensing[J]. Journal of Applied Optics, 2019, 40(6): 1152
    Download Citation